Journal Article PreJuSER-10240

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Corpuscular Model of Two-Beam Interference and Double-Slit Experiments with Single Photons

 ;  ;  ;  ;

2010
The Physical Society of Japan Tokyo

Journal of the Physical Society of Japan 79, 074401 () [10.1143/JPSJ.79.074401]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: We introduce an event-based corpuscular simulation model that reproduces the wave mechanical results of single-photon double-slit and two-beam interference experiments and (of a one-to-one copy of an experimental realization) of a single-photon interference experiment with a Fresnel biprism. The simulation comprises models that capture the essential features of the apparatuses used in the experiment, including the single-photon detectors recording individual detector clicks. We demonstrate that incorporating in the detector model, simple and minimalistic processes mimicking the memory and threshold behavior of single-photon detectors is sufficient to produce multipath interference patterns. These multipath interference patterns are built up by individual particles taking one single path to the detector where they arrive one-by-one. The particles in our model are not corpuscular in the standard, classical physics sense in that they are information carriers that exchange information with the apparatuses of the experimental set-up. The interference pattern is the final, collective outcome of the information exchanges of many particles with these apparatuses. The interference patterns are produced without making reference to the solution of a wave equation and without introducing signalling or non-local interactions between the particles or between different detection points on the detector screen.

Keyword(s): J ; computer simulation (auto) ; interference (auto) ; double-slit experiments (auto) ; quantum theory (auto)


Note: We would like to thank K. De Raedt, K. Keimpema, S. Zhao, M. Novotny, and B. Baten for many helpful comments. This work is partially supported by NCF, the Netherlands, by a Grant-in-Aid for Scientific Research on Priority Areas, and the Next Generation Super Computer Project, Nanoscience Program from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Contributing Institute(s):
  1. Jülich Supercomputing Centre (JSC)
Research Program(s):
  1. Scientific Computing (FUEK411) (FUEK411)
  2. 411 - Computational Science and Mathematical Methods (POF2-411) (POF2-411)

Appears in the scientific report 2010
Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Workflow collections > Public records
Institute Collections > JSC
Publications database
Open Access

 Record created 2012-11-13, last modified 2021-01-29