001024377 001__ 1024377
001024377 005__ 20250203103120.0
001024377 0247_ $$2doi$$a10.1016/j.apenergy.2023.121428
001024377 0247_ $$2ISSN$$a0306-2619
001024377 0247_ $$2ISSN$$a1872-9118
001024377 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02127
001024377 0247_ $$2WOS$$aWOS:001030356800001
001024377 037__ $$aFZJ-2024-02127
001024377 082__ $$a620
001024377 1001_ $$00000-0002-8076-4590$$aKoltermann, Lucas$$b0$$eCorresponding author
001024377 245__ $$aPower curves of megawatt-scale battery storage technologies for frequency regulation and energy trading
001024377 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2023
001024377 3367_ $$2DRIVER$$aarticle
001024377 3367_ $$2DataCite$$aOutput Types/Journal article
001024377 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712748622_24403
001024377 3367_ $$2BibTeX$$aARTICLE
001024377 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024377 3367_ $$00$$2EndNote$$aJournal Article
001024377 520__ $$aLarge-scale stationary battery energy storage systems (BESS) continue to increase in number and size. Most systems have been put into operation for grid services because of their technical capabilities. With increasing and more dynamic energy prices, their use in short-term energy trading such as day-ahead and intraday trading has also been gaining importance. In current technical and economic simulations and trading models, batteries are often used as an energy reservoir that can charge and discharge a constant power specified by the energy over a certain time. However, this simplification can lead to wrong results and makes economic assessments difficult. In order to successfully use BESS in energy trading, their real operating ranges and limits must be investigated, since batteries respectively BESS cannot deliver the same power over the entire state of charge (SOC) range. With a performance test of our hybrid BESS M5BAT, we show the characteristic performance curves for different battery technologies and consequently suitable operating ranges in a large-scale system configuration. The results show the wide range of challenges such as battery aging and balancing states that occur in the real-world implementation of BESS. The lithium-ion batteries of the system under test have a remaining usable energy between 75 % and 90 %, depending on the type of lithium-ion battery, while the usable energy of the lead acid batteries is only 60 %. The lithium-ion batteries were able to deliver a constant power output in the SOC range between 10 % and 80 %, which is a necessary requirement in short-term energy trading. The lead-acid batteries could only be discharged at full power in the range of 100 %–50 % SOC and charged at full power between 0 % and 50 %. In the performance test, balancing was a limiting factor for lithium-ion batteries, while aging was the limiting factor for lead-acid batteries. Based on our findings, estimates for other existing BESS can be made to determine feasible operating ranges of these batteries for short-term energy trading. This also provides a guideline for individual tests that should be carried out on other BESS for verification.
001024377 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001024377 536__ $$0G:(DE-82)BMWK-03ESP265F$$aBMWK-03ESP265F - M5BAT: Modularer multi-Megawatt multi-Technologie Mittelspannungsbatteriespeicher; Teilvorhaben: Entwicklung von Li-Ionen Batterien, Monitoring und Erstellung eines Designhandbuchs (BMWK-03ESP265F)$$cBMWK-03ESP265F$$x1
001024377 536__ $$0G:(DE-82)BMBF-03EI4034$$aBMBF 03EI4034 - Einzelvorhaben: EMMUseBat - Entwicklung von Methoden für den Multi-Use-Betrieb von modularen Batteriegroßspeichern im Mittelspannungsnetz (BMBF-03EI4034)$$cBMBF-03EI4034$$x2
001024377 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024377 7001_ $$0P:(DE-HGF)0$$aCeli Cortés, Mauricio$$b1
001024377 7001_ $$00000-0003-2216-9432$$aFiggener, Jan$$b2
001024377 7001_ $$00000-0003-3073-0744$$aZurmühlen, Sebastian$$b3
001024377 7001_ $$0P:(DE-Juel1)172625$$aSauer, Dirk Uwe$$b4
001024377 773__ $$0PERI:(DE-600)2000772-3$$a10.1016/j.apenergy.2023.121428$$gVol. 347, p. 121428 -$$p121428 -$$tApplied energy$$v347$$x0306-2619$$y2023
001024377 8564_ $$uhttps://juser.fz-juelich.de/record/1024377/files/koltermann_2023_manuscript.pdf$$yPublished on 2023-06-29. Available in OpenAccess from 2025-06-29.
001024377 8564_ $$uhttps://juser.fz-juelich.de/record/1024377/files/koltermann_2023_manuscript.gif?subformat=icon$$xicon$$yPublished on 2023-06-29. Available in OpenAccess from 2025-06-29.
001024377 8564_ $$uhttps://juser.fz-juelich.de/record/1024377/files/koltermann_2023_manuscript.jpg?subformat=icon-1440$$xicon-1440$$yPublished on 2023-06-29. Available in OpenAccess from 2025-06-29.
001024377 8564_ $$uhttps://juser.fz-juelich.de/record/1024377/files/koltermann_2023_manuscript.jpg?subformat=icon-180$$xicon-180$$yPublished on 2023-06-29. Available in OpenAccess from 2025-06-29.
001024377 8564_ $$uhttps://juser.fz-juelich.de/record/1024377/files/koltermann_2023_manuscript.jpg?subformat=icon-640$$xicon-640$$yPublished on 2023-06-29. Available in OpenAccess from 2025-06-29.
001024377 909CO $$ooai:juser.fz-juelich.de:1024377$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001024377 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172625$$aForschungszentrum Jülich$$b4$$kFZJ
001024377 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001024377 9141_ $$y2024
001024377 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-25
001024377 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-25
001024377 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-25
001024377 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-25
001024377 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001024377 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
001024377 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL ENERG : 2022$$d2023-08-25
001024377 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-25
001024377 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bAPPL ENERG : 2022$$d2023-08-25
001024377 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-25
001024377 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-25
001024377 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-25
001024377 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-25
001024377 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001024377 9801_ $$aFullTexts
001024377 980__ $$ajournal
001024377 980__ $$aVDB
001024377 980__ $$aUNRESTRICTED
001024377 980__ $$aI:(DE-Juel1)IEK-12-20141217
001024377 981__ $$aI:(DE-Juel1)IMD-4-20141217