001     1024377
005     20250203103120.0
024 7 _ |a 10.1016/j.apenergy.2023.121428
|2 doi
024 7 _ |a 0306-2619
|2 ISSN
024 7 _ |a 1872-9118
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-02127
|2 datacite_doi
024 7 _ |a WOS:001030356800001
|2 WOS
037 _ _ |a FZJ-2024-02127
082 _ _ |a 620
100 1 _ |a Koltermann, Lucas
|0 0000-0002-8076-4590
|b 0
|e Corresponding author
245 _ _ |a Power curves of megawatt-scale battery storage technologies for frequency regulation and energy trading
260 _ _ |a Amsterdam [u.a.]
|c 2023
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712748622_24403
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Large-scale stationary battery energy storage systems (BESS) continue to increase in number and size. Most systems have been put into operation for grid services because of their technical capabilities. With increasing and more dynamic energy prices, their use in short-term energy trading such as day-ahead and intraday trading has also been gaining importance. In current technical and economic simulations and trading models, batteries are often used as an energy reservoir that can charge and discharge a constant power specified by the energy over a certain time. However, this simplification can lead to wrong results and makes economic assessments difficult. In order to successfully use BESS in energy trading, their real operating ranges and limits must be investigated, since batteries respectively BESS cannot deliver the same power over the entire state of charge (SOC) range. With a performance test of our hybrid BESS M5BAT, we show the characteristic performance curves for different battery technologies and consequently suitable operating ranges in a large-scale system configuration. The results show the wide range of challenges such as battery aging and balancing states that occur in the real-world implementation of BESS. The lithium-ion batteries of the system under test have a remaining usable energy between 75 % and 90 %, depending on the type of lithium-ion battery, while the usable energy of the lead acid batteries is only 60 %. The lithium-ion batteries were able to deliver a constant power output in the SOC range between 10 % and 80 %, which is a necessary requirement in short-term energy trading. The lead-acid batteries could only be discharged at full power in the range of 100 %–50 % SOC and charged at full power between 0 % and 50 %. In the performance test, balancing was a limiting factor for lithium-ion batteries, while aging was the limiting factor for lead-acid batteries. Based on our findings, estimates for other existing BESS can be made to determine feasible operating ranges of these batteries for short-term energy trading. This also provides a guideline for individual tests that should be carried out on other BESS for verification.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
536 _ _ |a BMWK-03ESP265F - M5BAT: Modularer multi-Megawatt multi-Technologie Mittelspannungsbatteriespeicher; Teilvorhaben: Entwicklung von Li-Ionen Batterien, Monitoring und Erstellung eines Designhandbuchs (BMWK-03ESP265F)
|0 G:(DE-82)BMWK-03ESP265F
|c BMWK-03ESP265F
|x 1
536 _ _ |a BMBF 03EI4034 - Einzelvorhaben: EMMUseBat - Entwicklung von Methoden für den Multi-Use-Betrieb von modularen Batteriegroßspeichern im Mittelspannungsnetz (BMBF-03EI4034)
|0 G:(DE-82)BMBF-03EI4034
|c BMBF-03EI4034
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Celi Cortés, Mauricio
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Figgener, Jan
|0 0000-0003-2216-9432
|b 2
700 1 _ |a Zurmühlen, Sebastian
|0 0000-0003-3073-0744
|b 3
700 1 _ |a Sauer, Dirk Uwe
|0 P:(DE-Juel1)172625
|b 4
773 _ _ |a 10.1016/j.apenergy.2023.121428
|g Vol. 347, p. 121428 -
|0 PERI:(DE-600)2000772-3
|p 121428 -
|t Applied energy
|v 347
|y 2023
|x 0306-2619
856 4 _ |y Published on 2023-06-29. Available in OpenAccess from 2025-06-29.
|u https://juser.fz-juelich.de/record/1024377/files/koltermann_2023_manuscript.pdf
856 4 _ |y Published on 2023-06-29. Available in OpenAccess from 2025-06-29.
|x icon
|u https://juser.fz-juelich.de/record/1024377/files/koltermann_2023_manuscript.gif?subformat=icon
856 4 _ |y Published on 2023-06-29. Available in OpenAccess from 2025-06-29.
|x icon-1440
|u https://juser.fz-juelich.de/record/1024377/files/koltermann_2023_manuscript.jpg?subformat=icon-1440
856 4 _ |y Published on 2023-06-29. Available in OpenAccess from 2025-06-29.
|x icon-180
|u https://juser.fz-juelich.de/record/1024377/files/koltermann_2023_manuscript.jpg?subformat=icon-180
856 4 _ |y Published on 2023-06-29. Available in OpenAccess from 2025-06-29.
|x icon-640
|u https://juser.fz-juelich.de/record/1024377/files/koltermann_2023_manuscript.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1024377
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)172625
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-25
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL ENERG : 2022
|d 2023-08-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-25
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b APPL ENERG : 2022
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-25
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-25
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21