001024548 001__ 1024548
001024548 005__ 20250203103129.0
001024548 0247_ $$2doi$$a10.1002/ente.202201239
001024548 0247_ $$2ISSN$$a2194-4288
001024548 0247_ $$2ISSN$$a2194-4296
001024548 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02228
001024548 0247_ $$2WOS$$aWOS:000917799100001
001024548 037__ $$aFZJ-2024-02228
001024548 082__ $$a620
001024548 1001_ $$aHamzelui, Niloofar$$b0
001024548 245__ $$aChitosan as Enabling Polymeric Binder Material for Silicon‐Graphite‐Based Anodes in Lithium‐Ion Batteries
001024548 260__ $$aWeinheim [u.a.]$$bWiley-VCH$$c2023
001024548 3367_ $$2DRIVER$$aarticle
001024548 3367_ $$2DataCite$$aOutput Types/Journal article
001024548 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712737836_24403
001024548 3367_ $$2BibTeX$$aARTICLE
001024548 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024548 3367_ $$00$$2EndNote$$aJournal Article
001024548 500__ $$aUnterstützt durch Projekt: “GrEEn”(no. 313-W044B)
001024548 520__ $$aMassive volume change during (de-)lithiation and subsequent challenges, such as pulverization of active materials, delamination of electrode from the current collector, and fragile solid electrolyte interphase, are among the main impediments hindering the large-scale commercialization of silicon-containing anode materials in lithium-ion batteries. In this regard, designer polymeric binders with unique chemistries are considered as enabling solutions. Polymeric materials endowed with functional groups such as –OH, –COOH/COO−, and –NH2/NH3+, capable of building strong H bonds, are hailed as effective binders for Si-containing anode materials. Herein, chitosan biopolymers are investigated as a green and environmentally friendly binder in a silicon/graphite (Si/Gr) anode and compared to lithium poly(acrylic acid)/sodium carboxymethyl cellulose binders. The effect of degree of acetylation (DA) and degree of polymerization of chitosan on the electrochemical performance of Si/Gr anode-based cells is investigated. Anodes with chitosan binder with DA of 50% show the most promising electrochemical performance in Si/Gr||lithium metal and lithium nickel manganese cobalt oxide (NMC622)||Si/Gr cells. Crosslinking of chitosan binder with citric acid monohydrate in combination with free-standing electrodes results in improved electrochemical performance in full cells. The surface chemistry of electrochemically cycled Si/Gr anodes with/without chitosan binder is investigated by X-ray photoelectron spectroscopy.
001024548 536__ $$0G:(DE-HGF)POF4-1212$$a1212 - Materials and Interfaces (POF4-121)$$cPOF4-121$$fPOF IV$$x0
001024548 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024548 7001_ $$0P:(DE-HGF)0$$aLinhorst, Max$$b1
001024548 7001_ $$0P:(DE-HGF)0$$aMartin Nyenhuis, Gabriela$$b2
001024548 7001_ $$0P:(DE-HGF)0$$aHaneke, Lukas$$b3
001024548 7001_ $$00000-0001-8834-2766$$aEshetu, Gebrekidan Gebresilassie$$b4$$eCorresponding author
001024548 7001_ $$aPlacke, Tobias$$b5
001024548 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b6$$ufzj
001024548 7001_ $$0P:(DE-HGF)0$$aMoerschbacher, Bruno M.$$b7
001024548 7001_ $$0P:(DE-Juel1)165182$$aFiggemeier, Egbert$$b8$$eCorresponding author
001024548 773__ $$0PERI:(DE-600)2700412-0$$a10.1002/ente.202201239$$gVol. 11, no. 3, p. 2201239$$n3$$p2201239$$tEnergy technology$$v11$$x2194-4288$$y2023
001024548 8564_ $$uhttps://juser.fz-juelich.de/record/1024548/files/Published-Version.pdf$$yRestricted$$zStatID:(DE-HGF)0599
001024548 8564_ $$uhttps://juser.fz-juelich.de/record/1024548/files/Version-to-journal.pdf$$yOpenAccess$$zStatID:(DE-HGF)0510
001024548 8564_ $$uhttps://juser.fz-juelich.de/record/1024548/files/Published-Version.gif?subformat=icon$$xicon$$yRestricted$$zStatID:(DE-HGF)0599
001024548 8564_ $$uhttps://juser.fz-juelich.de/record/1024548/files/Published-Version.jpg?subformat=icon-1440$$xicon-1440$$yRestricted$$zStatID:(DE-HGF)0599
001024548 8564_ $$uhttps://juser.fz-juelich.de/record/1024548/files/Published-Version.jpg?subformat=icon-180$$xicon-180$$yRestricted$$zStatID:(DE-HGF)0599
001024548 8564_ $$uhttps://juser.fz-juelich.de/record/1024548/files/Published-Version.jpg?subformat=icon-640$$xicon-640$$yRestricted$$zStatID:(DE-HGF)0599
001024548 8564_ $$uhttps://juser.fz-juelich.de/record/1024548/files/Version-to-journal.gif?subformat=icon$$xicon$$yOpenAccess$$zStatID:(DE-HGF)0510
001024548 8564_ $$uhttps://juser.fz-juelich.de/record/1024548/files/Version-to-journal.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess$$zStatID:(DE-HGF)0510
001024548 8564_ $$uhttps://juser.fz-juelich.de/record/1024548/files/Version-to-journal.jpg?subformat=icon-180$$xicon-180$$yOpenAccess$$zStatID:(DE-HGF)0510
001024548 8564_ $$uhttps://juser.fz-juelich.de/record/1024548/files/Version-to-journal.jpg?subformat=icon-640$$xicon-640$$yOpenAccess$$zStatID:(DE-HGF)0510
001024548 909CO $$ooai:juser.fz-juelich.de:1024548$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001024548 9101_ $$0I:(DE-588b)36225-6$$60000-0001-8834-2766$$aRWTH Aachen$$b4$$kRWTH
001024548 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b6$$kFZJ
001024548 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165182$$aForschungszentrum Jülich$$b8$$kFZJ
001024548 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1212$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
001024548 9141_ $$y2024
001024548 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
001024548 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-26
001024548 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-26
001024548 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGY TECHNOL-GER : 2022$$d2023-10-26
001024548 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
001024548 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-10-26$$wger
001024548 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-26
001024548 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
001024548 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-26
001024548 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001024548 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
001024548 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
001024548 920__ $$lyes
001024548 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001024548 9801_ $$aFullTexts
001024548 980__ $$ajournal
001024548 980__ $$aVDB
001024548 980__ $$aUNRESTRICTED
001024548 980__ $$aI:(DE-Juel1)IEK-12-20141217
001024548 981__ $$aI:(DE-Juel1)IMD-4-20141217