001024783 001__ 1024783
001024783 005__ 20250203103151.0
001024783 0247_ $$2doi$$a10.1117/12.2646181
001024783 037__ $$aFZJ-2024-02449
001024783 1001_ $$0P:(DE-HGF)0$$aEl Kurdi, Moustafa$$b0
001024783 1112_ $$aSilicon Photonics XVIII$$cSan Francisco$$d2023-01-28 - 2023-02-03$$wUnited States
001024783 245__ $$aGeSnOI technology enabling room temperature lasing with GeSn alloys
001024783 260__ $$c2023
001024783 3367_ $$033$$2EndNote$$aConference Paper
001024783 3367_ $$2DataCite$$aOther
001024783 3367_ $$2BibTeX$$aINPROCEEDINGS
001024783 3367_ $$2DRIVER$$aconferenceObject
001024783 3367_ $$2ORCID$$aLECTURE_SPEECH
001024783 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1714556015_3947$$xInvited
001024783 520__ $$aGeSn alloys are the most promising direct band gap semiconductors to demonstrate full CMOS-compatible laser integration with a manufacturing from Group-IV materials. Since the first demonstration of lasing with GeSn alloys up to 100 K, many researches were devoted to increase the laser operation up to room temperature. We will discuss the band sructure requirements and the practical issues that have to be addressed in order to reach robust gain with increasing temperature. We show that misfit defects managment and strain engineering are key ingredients. For that purpose we developped a GeSn-On-Insulator platform, that combine strain engineering , defective interfacial layer removal and laser resonator designs ad fabrication. Here we show that room temperature lasing, up to 300 K, can be obtained in microdisk resonators fabricated on a GeSnOI layer both with using high Sn-content in the gain medium, e. g. 17% or with applying tensile strain to a layer with lower Sn-content of 14%.
001024783 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001024783 588__ $$aDataset connected to CrossRef Conference
001024783 7001_ $$0P:(DE-HGF)0$$aBjelajac, Andjelika$$b1
001024783 7001_ $$0P:(DE-HGF)0$$aGromovyi, Maksym$$b2
001024783 7001_ $$0P:(DE-HGF)0$$aSakat, Emilie$$b3
001024783 7001_ $$0P:(DE-HGF)0$$aIkonic, Zoran$$b4
001024783 7001_ $$0P:(DE-HGF)0$$aReboud, Vincent$$b5
001024783 7001_ $$0P:(DE-HGF)0$$aChelnokov, Alexei$$b6
001024783 7001_ $$0P:(DE-HGF)0$$aPauc, Nicolas$$b7
001024783 7001_ $$0P:(DE-HGF)0$$aCalvo, Vincent$$b8
001024783 7001_ $$0P:(DE-HGF)0$$aHartmann, Jean-Michel$$b9
001024783 7001_ $$0P:(DE-Juel1)125569$$aBuca, Dan$$b10$$eCorresponding author
001024783 7001_ $$0P:(DE-HGF)0$$aReed, Graham T.$$b11$$eEditor
001024783 7001_ $$0P:(DE-HGF)0$$aKnights, Andrew P.$$b12$$eEditor
001024783 773__ $$a10.1117/12.2646181
001024783 909CO $$ooai:juser.fz-juelich.de:1024783$$pVDB
001024783 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich$$b10$$kFZJ
001024783 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001024783 9141_ $$y2024
001024783 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
001024783 980__ $$aconf
001024783 980__ $$aVDB
001024783 980__ $$aI:(DE-Juel1)PGI-9-20110106
001024783 980__ $$aUNRESTRICTED