001024891 001__ 1024891
001024891 005__ 20250203103501.0
001024891 0247_ $$2doi$$a10.1039/D2TA08650F
001024891 0247_ $$2ISSN$$a2050-7488
001024891 0247_ $$2ISSN$$a2050-7496
001024891 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02542
001024891 0247_ $$2WOS$$aWOS:000922078300001
001024891 037__ $$aFZJ-2024-02542
001024891 082__ $$a530
001024891 1001_ $$0P:(DE-HGF)0$$aDu, Leilei$$b0
001024891 245__ $$aFailure mechanism of LiNi 0.6 Co 0.2 Mn 0.2 O 2 cathodes in aqueous/non-aqueous hybrid electrolyte
001024891 260__ $$aLondon [u.a.]$$bRSC$$c2023
001024891 3367_ $$2DRIVER$$aarticle
001024891 3367_ $$2DataCite$$aOutput Types/Journal article
001024891 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712733859_14761
001024891 3367_ $$2BibTeX$$aARTICLE
001024891 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024891 3367_ $$00$$2EndNote$$aJournal Article
001024891 500__ $$aUnterstützt durch DFG Projekt Li 2916/2-1 und das MWIDE Projekt "GrEEn" (313-W044A)
001024891 520__ $$aThe urgent need for improving the energy density of aqueous lithium ion batteries (ALIBs) can be addressed by the implementation of advanced electrode materials and electrolytes. The utilization of layered oxide cathodes, particularly Li[NixCoyMnz]O2 (NCM) materials, is an effective strategy, as they can offer high specific capacities in an appropriate voltage range. However, due to the strong effect of humidity on the degradation of Ni-rich layered oxide cathodes, using these materials together with highly concentrated aqueous electrolytes is critical. In this work, the underlying mechanisms responsible for the degradation of Li[Ni0.6Co0.2Mn0.2]O2 (NCM622)‖TiO2@LiTi2(PO4)3 (P/N = 1.2 : 1) full-cells are systematically explored by comprehensive studies, involving the evolution of the lattice structure of NCM622 and electrochemical impedance dependent on the operating voltage range (0.7–2.8 V or 0.7–2.9 V). It is found that in aqueous/non-aqueous hybrid electrolyte, in addition to the discharge process, proton intercalation into NCM622 also takes place during the charging process, which is dramatically severe at higher upper cut-off voltage (2.9 V), leading to a rapid degradation of the cathode material. The intercalated protons not only aggravate the electrochemical impedance by blocking Li+ diffusion, but also activate the higher potential redox pairs. This experimental study offers an in-depth understanding about the failure mechanism of NCM622 cathode materials in aqueous electrolytes.
001024891 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001024891 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024891 7001_ $$0P:(DE-Juel1)173731$$aHou, Xu$$b1
001024891 7001_ $$0P:(DE-HGF)0$$aBerghus, Debbie$$b2
001024891 7001_ $$0P:(DE-HGF)0$$aFrankenstein, Lars$$b3
001024891 7001_ $$00000-0002-5670-0327$$aSchmuch, Richard$$b4
001024891 7001_ $$aWang, Jun$$b5
001024891 7001_ $$0P:(DE-Juel1)166311$$aPaillard, Elie$$b6
001024891 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b7$$ufzj
001024891 7001_ $$0P:(DE-HGF)0$$aPlacke, Tobias$$b8
001024891 7001_ $$0P:(DE-Juel1)174577$$aLi, Jie$$b9$$eCorresponding author$$ufzj
001024891 773__ $$0PERI:(DE-600)2702232-8$$a10.1039/D2TA08650F$$gVol. 11, no. 7, p. 3663 - 3672$$n7$$p3663 - 3672$$tJournal of materials chemistry / A$$v11$$x2050-7488$$y2023
001024891 8564_ $$uhttps://juser.fz-juelich.de/record/1024891/files/Failure%20mechanism%20of%20LiNi%200.6%20Co%200.2%20Mn%200.2%20O%202%20cathodes%20in%20aqueous_non-aqueous%20hybrid%20electrolyte.pdf$$yOpenAccess
001024891 8564_ $$uhttps://juser.fz-juelich.de/record/1024891/files/Failure%20mechanism%20of%20LiNi%200.6%20Co%200.2%20Mn%200.2%20O%202%20cathodes%20in%20aqueous_non-aqueous%20hybrid%20electrolyte.gif?subformat=icon$$xicon$$yOpenAccess
001024891 8564_ $$uhttps://juser.fz-juelich.de/record/1024891/files/Failure%20mechanism%20of%20LiNi%200.6%20Co%200.2%20Mn%200.2%20O%202%20cathodes%20in%20aqueous_non-aqueous%20hybrid%20electrolyte.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001024891 8564_ $$uhttps://juser.fz-juelich.de/record/1024891/files/Failure%20mechanism%20of%20LiNi%200.6%20Co%200.2%20Mn%200.2%20O%202%20cathodes%20in%20aqueous_non-aqueous%20hybrid%20electrolyte.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001024891 8564_ $$uhttps://juser.fz-juelich.de/record/1024891/files/Failure%20mechanism%20of%20LiNi%200.6%20Co%200.2%20Mn%200.2%20O%202%20cathodes%20in%20aqueous_non-aqueous%20hybrid%20electrolyte.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001024891 909CO $$ooai:juser.fz-juelich.de:1024891$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001024891 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b7$$kFZJ
001024891 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174577$$aForschungszentrum Jülich$$b9$$kFZJ
001024891 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001024891 9141_ $$y2024
001024891 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
001024891 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
001024891 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-23
001024891 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-23
001024891 915__ $$0LIC:(DE-HGF)CCBYNC3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 3.0
001024891 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
001024891 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ MATER CHEM A : 2022$$d2023-08-23
001024891 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001024891 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER CHEM A : 2022$$d2023-08-23
001024891 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-08-23$$wger
001024891 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
001024891 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
001024891 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
001024891 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001024891 9801_ $$aFullTexts
001024891 980__ $$ajournal
001024891 980__ $$aVDB
001024891 980__ $$aUNRESTRICTED
001024891 980__ $$aI:(DE-Juel1)IEK-12-20141217
001024891 981__ $$aI:(DE-Juel1)IMD-4-20141217