Journal Article FZJ-2024-02542

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Failure mechanism of LiNi 0.6 Co 0.2 Mn 0.2 O 2 cathodes in aqueous/non-aqueous hybrid electrolyte

 ;  ;  ;  ;  ;  ;  ;  ;  ;

2023
RSC London ˜[u.a.]œ

Journal of materials chemistry / A 11(7), 3663 - 3672 () [10.1039/D2TA08650F]

This record in other databases:    

Please use a persistent id in citations: doi:  doi:

Abstract: The urgent need for improving the energy density of aqueous lithium ion batteries (ALIBs) can be addressed by the implementation of advanced electrode materials and electrolytes. The utilization of layered oxide cathodes, particularly Li[NixCoyMnz]O2 (NCM) materials, is an effective strategy, as they can offer high specific capacities in an appropriate voltage range. However, due to the strong effect of humidity on the degradation of Ni-rich layered oxide cathodes, using these materials together with highly concentrated aqueous electrolytes is critical. In this work, the underlying mechanisms responsible for the degradation of Li[Ni0.6Co0.2Mn0.2]O2 (NCM622)‖TiO2@LiTi2(PO4)3 (P/N = 1.2 : 1) full-cells are systematically explored by comprehensive studies, involving the evolution of the lattice structure of NCM622 and electrochemical impedance dependent on the operating voltage range (0.7–2.8 V or 0.7–2.9 V). It is found that in aqueous/non-aqueous hybrid electrolyte, in addition to the discharge process, proton intercalation into NCM622 also takes place during the charging process, which is dramatically severe at higher upper cut-off voltage (2.9 V), leading to a rapid degradation of the cathode material. The intercalated protons not only aggravate the electrochemical impedance by blocking Li+ diffusion, but also activate the higher potential redox pairs. This experimental study offers an in-depth understanding about the failure mechanism of NCM622 cathode materials in aqueous electrolytes.

Classification:

Note: Unterstützt durch DFG Projekt Li 2916/2-1 und das MWIDE Projekt "GrEEn" (313-W044A)

Contributing Institute(s):
  1. Helmholtz-Institut Münster Ionenleiter für Energiespeicher (IEK-12)
Research Program(s):
  1. 1221 - Fundamentals and Materials (POF4-122) (POF4-122)

Appears in the scientific report 2024
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial CC BY-NC 3.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; Essential Science Indicators ; IF >= 10 ; JCR ; National-Konsortium ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-4
Workflow collections > Public records
IEK > IEK-12
Publications database
Open Access

 Record created 2024-04-10, last modified 2025-02-03


OpenAccess:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)