Hauptseite > Publikationsdatenbank > Failure mechanism of LiNi 0.6 Co 0.2 Mn 0.2 O 2 cathodes in aqueous/non-aqueous hybrid electrolyte > print |
001 | 1024891 | ||
005 | 20250203103501.0 | ||
024 | 7 | _ | |a 10.1039/D2TA08650F |2 doi |
024 | 7 | _ | |a 2050-7488 |2 ISSN |
024 | 7 | _ | |a 2050-7496 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2024-02542 |2 datacite_doi |
024 | 7 | _ | |a WOS:000922078300001 |2 WOS |
037 | _ | _ | |a FZJ-2024-02542 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Du, Leilei |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Failure mechanism of LiNi 0.6 Co 0.2 Mn 0.2 O 2 cathodes in aqueous/non-aqueous hybrid electrolyte |
260 | _ | _ | |a London [u.a.] |c 2023 |b RSC |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1712733859_14761 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a Unterstützt durch DFG Projekt Li 2916/2-1 und das MWIDE Projekt "GrEEn" (313-W044A) |
520 | _ | _ | |a The urgent need for improving the energy density of aqueous lithium ion batteries (ALIBs) can be addressed by the implementation of advanced electrode materials and electrolytes. The utilization of layered oxide cathodes, particularly Li[NixCoyMnz]O2 (NCM) materials, is an effective strategy, as they can offer high specific capacities in an appropriate voltage range. However, due to the strong effect of humidity on the degradation of Ni-rich layered oxide cathodes, using these materials together with highly concentrated aqueous electrolytes is critical. In this work, the underlying mechanisms responsible for the degradation of Li[Ni0.6Co0.2Mn0.2]O2 (NCM622)‖TiO2@LiTi2(PO4)3 (P/N = 1.2 : 1) full-cells are systematically explored by comprehensive studies, involving the evolution of the lattice structure of NCM622 and electrochemical impedance dependent on the operating voltage range (0.7–2.8 V or 0.7–2.9 V). It is found that in aqueous/non-aqueous hybrid electrolyte, in addition to the discharge process, proton intercalation into NCM622 also takes place during the charging process, which is dramatically severe at higher upper cut-off voltage (2.9 V), leading to a rapid degradation of the cathode material. The intercalated protons not only aggravate the electrochemical impedance by blocking Li+ diffusion, but also activate the higher potential redox pairs. This experimental study offers an in-depth understanding about the failure mechanism of NCM622 cathode materials in aqueous electrolytes. |
536 | _ | _ | |a 1221 - Fundamentals and Materials (POF4-122) |0 G:(DE-HGF)POF4-1221 |c POF4-122 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Hou, Xu |0 P:(DE-Juel1)173731 |b 1 |
700 | 1 | _ | |a Berghus, Debbie |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Frankenstein, Lars |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Schmuch, Richard |0 0000-0002-5670-0327 |b 4 |
700 | 1 | _ | |a Wang, Jun |b 5 |
700 | 1 | _ | |a Paillard, Elie |0 P:(DE-Juel1)166311 |b 6 |
700 | 1 | _ | |a Winter, Martin |0 P:(DE-Juel1)166130 |b 7 |u fzj |
700 | 1 | _ | |a Placke, Tobias |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Li, Jie |0 P:(DE-Juel1)174577 |b 9 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.1039/D2TA08650F |g Vol. 11, no. 7, p. 3663 - 3672 |0 PERI:(DE-600)2702232-8 |n 7 |p 3663 - 3672 |t Journal of materials chemistry / A |v 11 |y 2023 |x 2050-7488 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1024891/files/Failure%20mechanism%20of%20LiNi%200.6%20Co%200.2%20Mn%200.2%20O%202%20cathodes%20in%20aqueous_non-aqueous%20hybrid%20electrolyte.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1024891/files/Failure%20mechanism%20of%20LiNi%200.6%20Co%200.2%20Mn%200.2%20O%202%20cathodes%20in%20aqueous_non-aqueous%20hybrid%20electrolyte.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1024891/files/Failure%20mechanism%20of%20LiNi%200.6%20Co%200.2%20Mn%200.2%20O%202%20cathodes%20in%20aqueous_non-aqueous%20hybrid%20electrolyte.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1024891/files/Failure%20mechanism%20of%20LiNi%200.6%20Co%200.2%20Mn%200.2%20O%202%20cathodes%20in%20aqueous_non-aqueous%20hybrid%20electrolyte.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1024891/files/Failure%20mechanism%20of%20LiNi%200.6%20Co%200.2%20Mn%200.2%20O%202%20cathodes%20in%20aqueous_non-aqueous%20hybrid%20electrolyte.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1024891 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)166130 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)174577 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1221 |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-08-23 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial CC BY-NC 3.0 |0 LIC:(DE-HGF)CCBYNC3 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-23 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b J MATER CHEM A : 2022 |d 2023-08-23 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J MATER CHEM A : 2022 |d 2023-08-23 |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2023-08-23 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-23 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-12-20141217 |k IEK-12 |l Helmholtz-Institut Münster Ionenleiter für Energiespeicher |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-12-20141217 |
981 | _ | _ | |a I:(DE-Juel1)IMD-4-20141217 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|