001025051 001__ 1025051
001025051 005__ 20250204113834.0
001025051 0247_ $$2doi$$a10.1016/j.clinph.2023.12.043
001025051 0247_ $$2ISSN$$a1388-2457
001025051 0247_ $$2ISSN$$a0921-884X
001025051 0247_ $$2ISSN$$a1872-8952
001025051 037__ $$aFZJ-2024-02639
001025051 082__ $$a610
001025051 1001_ $$0P:(DE-HGF)0$$aDoering, E.$$b0
001025051 245__ $$aMRI- or 18F-FDG PET-derived brain age gaps: Associations with markers of Alzheimer's disease
001025051 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2024
001025051 3367_ $$2DRIVER$$aarticle
001025051 3367_ $$2DataCite$$aOutput Types/Journal article
001025051 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712827635_17869
001025051 3367_ $$2BibTeX$$aARTICLE
001025051 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025051 3367_ $$00$$2EndNote$$aJournal Article
001025051 520__ $$aWhen the age of an individual's brain appears older than their chronological age, i.e., when the brain age gap (BAG) is positive, it may indicate the presence of a neurodegenerative condition, such as Alzheimer’s disease (AD). In this study, we evaluated whether BAG, determined by MRI (reflecting atrophy) or 18F-FDG PET (reflecting brain metabolism), correlate differentially with cognitive function, neuropathological indicators, and disease progression in individuals with normal cognitive function (CN), as well as those with subjective cognitive decline (SCD) or mild cognitive impairment (MCI).
001025051 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001025051 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x1
001025051 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025051 7001_ $$0P:(DE-Juel1)180946$$aAntonopoulos, G.$$b1$$ufzj
001025051 7001_ $$0P:(DE-Juel1)178642$$aHönig, M.$$b2$$ufzj
001025051 7001_ $$0P:(DE-HGF)0$$avan Eimeren, T.$$b3
001025051 7001_ $$0P:(DE-HGF)0$$aDaamen, M.$$b4
001025051 7001_ $$0P:(DE-HGF)0$$aBoecker, H.$$b5
001025051 7001_ $$0P:(DE-HGF)0$$aJessen, F.$$b6
001025051 7001_ $$0P:(DE-HGF)0$$aDuezel, E.$$b7
001025051 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, S.$$b8$$ufzj
001025051 7001_ $$0P:(DE-Juel1)172843$$aPatil, K.$$b9$$ufzj
001025051 7001_ $$0P:(DE-Juel1)177611$$aDrzezga, A.$$b10$$ufzj
001025051 773__ $$0PERI:(DE-600)1499934-1$$a10.1016/j.clinph.2023.12.043$$gVol. 159, p. e15 -$$pe15 -$$tClinical neurophysiology$$v159$$x1388-2457$$y2024
001025051 909CO $$ooai:juser.fz-juelich.de:1025051$$pVDB
001025051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180946$$aForschungszentrum Jülich$$b1$$kFZJ
001025051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178642$$aForschungszentrum Jülich$$b2$$kFZJ
001025051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b8$$kFZJ
001025051 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$a HHU Düsseldorf$$b8
001025051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172843$$aForschungszentrum Jülich$$b9$$kFZJ
001025051 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172843$$a HHU Düsseldorf$$b9
001025051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177611$$aForschungszentrum Jülich$$b10$$kFZJ
001025051 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001025051 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1
001025051 9141_ $$y2024
001025051 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
001025051 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-21
001025051 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
001025051 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-11$$wger
001025051 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCLIN NEUROPHYSIOL : 2022$$d2024-12-11
001025051 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-11
001025051 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-11
001025051 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-11
001025051 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-11
001025051 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-11
001025051 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-11
001025051 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-11
001025051 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-11
001025051 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-11
001025051 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001025051 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x1
001025051 980__ $$ajournal
001025051 980__ $$aVDB
001025051 980__ $$aI:(DE-Juel1)INM-7-20090406
001025051 980__ $$aI:(DE-Juel1)INM-2-20090406
001025051 980__ $$aUNRESTRICTED