| Home > Publications database > MRI- or 18F-FDG PET-derived brain age gaps: Associations with markers of Alzheimer's disease > print |
| 001 | 1025051 | ||
| 005 | 20250204113834.0 | ||
| 024 | 7 | _ | |a 10.1016/j.clinph.2023.12.043 |2 doi |
| 024 | 7 | _ | |a 1388-2457 |2 ISSN |
| 024 | 7 | _ | |a 0921-884X |2 ISSN |
| 024 | 7 | _ | |a 1872-8952 |2 ISSN |
| 037 | _ | _ | |a FZJ-2024-02639 |
| 082 | _ | _ | |a 610 |
| 100 | 1 | _ | |a Doering, E. |0 P:(DE-HGF)0 |b 0 |
| 245 | _ | _ | |a MRI- or 18F-FDG PET-derived brain age gaps: Associations with markers of Alzheimer's disease |
| 260 | _ | _ | |a Amsterdam [u.a.] |c 2024 |b Elsevier Science |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1712827635_17869 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a When the age of an individual's brain appears older than their chronological age, i.e., when the brain age gap (BAG) is positive, it may indicate the presence of a neurodegenerative condition, such as Alzheimer’s disease (AD). In this study, we evaluated whether BAG, determined by MRI (reflecting atrophy) or 18F-FDG PET (reflecting brain metabolism), correlate differentially with cognitive function, neuropathological indicators, and disease progression in individuals with normal cognitive function (CN), as well as those with subjective cognitive decline (SCD) or mild cognitive impairment (MCI). |
| 536 | _ | _ | |a 5251 - Multilevel Brain Organization and Variability (POF4-525) |0 G:(DE-HGF)POF4-5251 |c POF4-525 |f POF IV |x 0 |
| 536 | _ | _ | |a 5253 - Neuroimaging (POF4-525) |0 G:(DE-HGF)POF4-5253 |c POF4-525 |f POF IV |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Antonopoulos, G. |0 P:(DE-Juel1)180946 |b 1 |u fzj |
| 700 | 1 | _ | |a Hönig, M. |0 P:(DE-Juel1)178642 |b 2 |u fzj |
| 700 | 1 | _ | |a van Eimeren, T. |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Daamen, M. |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Boecker, H. |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Jessen, F. |0 P:(DE-HGF)0 |b 6 |
| 700 | 1 | _ | |a Duezel, E. |0 P:(DE-HGF)0 |b 7 |
| 700 | 1 | _ | |a Eickhoff, S. |0 P:(DE-Juel1)131678 |b 8 |u fzj |
| 700 | 1 | _ | |a Patil, K. |0 P:(DE-Juel1)172843 |b 9 |u fzj |
| 700 | 1 | _ | |a Drzezga, A. |0 P:(DE-Juel1)177611 |b 10 |u fzj |
| 773 | _ | _ | |a 10.1016/j.clinph.2023.12.043 |g Vol. 159, p. e15 - |0 PERI:(DE-600)1499934-1 |p e15 - |t Clinical neurophysiology |v 159 |y 2024 |x 1388-2457 |
| 909 | C | O | |o oai:juser.fz-juelich.de:1025051 |p VDB |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)180946 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)178642 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)131678 |
| 910 | 1 | _ | |a HHU Düsseldorf |0 I:(DE-HGF)0 |b 8 |6 P:(DE-Juel1)131678 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)172843 |
| 910 | 1 | _ | |a HHU Düsseldorf |0 I:(DE-HGF)0 |b 9 |6 P:(DE-Juel1)172843 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)177611 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5251 |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5253 |x 1 |
| 914 | 1 | _ | |y 2024 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-21 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-10-21 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-21 |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2024-12-11 |w ger |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CLIN NEUROPHYSIOL : 2022 |d 2024-12-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-11 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2024-12-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-11 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-11 |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-7-20090406 |k INM-7 |l Gehirn & Verhalten |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-2-20090406 |k INM-2 |l Molekulare Organisation des Gehirns |x 1 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)INM-7-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)INM-2-20090406 |
| 980 | _ | _ | |a UNRESTRICTED |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|