001     1025087
005     20250203103437.0
024 7 _ |a 10.1093/micmic/ozad067.142
|2 doi
024 7 _ |a 1079-8501
|2 ISSN
024 7 _ |a 1431-9276
|2 ISSN
024 7 _ |a 1435-8115
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-02675
|2 datacite_doi
037 _ _ |a FZJ-2024-02675
082 _ _ |a 500
100 1 _ |a Lazić, Ivan
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Broadening Application Spectrum of iDPC-STEM Imaging from Beam Sensitive Solid Materials to Biological and Cryo Nano-particles Using Single Particle Analysis
260 _ _ |a Oxford
|c 2023
|b Oxford University Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712834512_17705
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In the recent years, scanning transmission electron microscopy (STEM) applying focused electron illumination, has been shown to have the capacity to image extremely electron beam sensitive materials [1, 2], including single molecules trapped within porous Zeolite channels [3, 4]. This has been achieved through integrated differential phase contrast STEM mode, known as iDPC-STEM [5–7], which is a dose efficient imaging technique, with directly interpretable contrast transfer function (CTF) and high signal to noise ratio (SNR), as main advantages over the conventional (S)TEM techniques. Recently, biological nano particle structures at near atomic resolution have been also revealed using iDPC-STEM in combination with single particle analysis (SPA) [8, 9]. Previously, SPA has been almost solely used with conventional TEM (CTEM).
536 _ _ |a 5352 - Understanding the Functionality of Soft Matter and Biomolecular Systems (POF4-535)
|0 G:(DE-HGF)POF4-5352
|c POF4-535
|f POF IV
|x 0
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Wirix, Maarten
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Mann, Daniel
|0 P:(DE-Juel1)179550
|b 2
|u fzj
700 1 _ |a Filopoulou, Aikaterini
|0 P:(DE-Juel1)184560
|b 3
|u fzj
700 1 _ |a Leidl, Max Leo
|0 P:(DE-Juel1)186015
|b 4
|u fzj
700 1 _ |a Müller-Caspary, Knut
|0 P:(DE-Juel1)165314
|b 5
|u fzj
700 1 _ |a Meingast, Arno
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Carlsson, Anna
|0 P:(DE-HGF)0
|b 7
700 1 _ |a de Haas, Felix
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Sachse, Carsten
|0 P:(DE-Juel1)173949
|b 9
|u fzj
773 _ _ |a 10.1093/micmic/ozad067.142
|g Vol. 29, no. Supplement_1, p. 307 - 308
|0 PERI:(DE-600)1481716-0
|n Supplement_1
|p 307 - 308
|t Microscopy and microanalysis
|v 29
|y 2023
|x 1079-8501
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1025087/files/ozad067.142.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1025087/files/ozad067.142.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1025087/files/ozad067.142.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1025087/files/ozad067.142.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1025087/files/ozad067.142.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1025087
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)179550
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)184560
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)186015
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)165314
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)173949
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5352
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 1
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-22
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MICROSC MICROANAL : 2022
|d 2023-08-22
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-22
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-22
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-22
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-22
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-22
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-3-20170113
|k ER-C-3
|l Strukturbiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-3-20170113
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21