001025204 001__ 1025204
001025204 005__ 20250204113838.0
001025204 0247_ $$2doi$$a10.1016/j.mlwa.2024.100544
001025204 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02772
001025204 0247_ $$2WOS$$aWOS:001289088000001
001025204 037__ $$aFZJ-2024-02772
001025204 082__ $$a004
001025204 1001_ $$0P:(DE-Juel1)187067$$aNguyen, Binh Duong$$b0$$ufzj
001025204 245__ $$aEfficient surrogate models for materials science simulations: Machine learning-based prediction of microstructure properties
001025204 260__ $$aAmsterdam$$bElsevier$$c2024
001025204 3367_ $$2DRIVER$$aarticle
001025204 3367_ $$2DataCite$$aOutput Types/Journal article
001025204 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714712913_30347
001025204 3367_ $$2BibTeX$$aARTICLE
001025204 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025204 3367_ $$00$$2EndNote$$aJournal Article
001025204 520__ $$aDetermining, understanding, and predicting the so-called structure–property relation is an important task in many scientific disciplines, such as chemistry, biology, meteorology, physics, engineering, and materials science. Structure refers to the spatial distribution of, e.g., substances, material, or matter in general, while property is a resulting characteristic that usually depends in a non-trivial way on spatial details of the structure. Traditionally, forward simulations models have been used for such tasks. Recently, several machine learning algorithms have been applied in these scientific fields to enhance and accelerate simulation models or as surrogate models. In this work, we develop and investigate the applications of six machine learning techniques based on two different datasets from the domain of materials science: data from a two-dimensional Ising model for predicting the formation of magnetic domains and data representing the evolution of dual-phase microstructures from the Cahn–Hilliard model. We analyze the accuracy and robustness of all models and elucidate the reasons for the differences in their performances. The impact of including domain knowledge through tailored features is studied, and general recommendations based on the availability and quality of training data are derived from this.
001025204 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001025204 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025204 7001_ $$0P:(DE-Juel1)187058$$aPotapenko, Pavlo$$b1$$ufzj
001025204 7001_ $$0P:(DE-Juel1)186709$$aDemirci, Aytekin$$b2$$ufzj
001025204 7001_ $$0P:(DE-Juel1)186834$$aGovind, Kishan$$b3$$ufzj
001025204 7001_ $$0P:(DE-Juel1)190683$$aBompas, Sébastien$$b4$$ufzj
001025204 7001_ $$0P:(DE-Juel1)186075$$aSandfeld, Stefan$$b5$$eCorresponding author
001025204 773__ $$0PERI:(DE-600)3052291-2$$a10.1016/j.mlwa.2024.100544$$gVol. 16, p. 100544 -$$p100544 -$$tMachine learning with applications$$v16$$x2666-8270$$y2024
001025204 8564_ $$uhttps://juser.fz-juelich.de/record/1025204/files/1-s2.0-S2666827024000203-main.pdf$$yOpenAccess
001025204 8564_ $$uhttps://juser.fz-juelich.de/record/1025204/files/1-s2.0-S2666827024000203-main.gif?subformat=icon$$xicon$$yOpenAccess
001025204 8564_ $$uhttps://juser.fz-juelich.de/record/1025204/files/1-s2.0-S2666827024000203-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001025204 8564_ $$uhttps://juser.fz-juelich.de/record/1025204/files/1-s2.0-S2666827024000203-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001025204 8564_ $$uhttps://juser.fz-juelich.de/record/1025204/files/1-s2.0-S2666827024000203-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001025204 8767_ $$8E-2024-00381-b$$92024-06-05$$a1200204254$$d2024-06-10$$eAPC$$jZahlung erfolgt
001025204 909CO $$ooai:juser.fz-juelich.de:1025204$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001025204 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187067$$aForschungszentrum Jülich$$b0$$kFZJ
001025204 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187058$$aForschungszentrum Jülich$$b1$$kFZJ
001025204 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186709$$aForschungszentrum Jülich$$b2$$kFZJ
001025204 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186834$$aForschungszentrum Jülich$$b3$$kFZJ
001025204 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190683$$aForschungszentrum Jülich$$b4$$kFZJ
001025204 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186075$$aForschungszentrum Jülich$$b5$$kFZJ
001025204 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001025204 9141_ $$y2024
001025204 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001025204 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001025204 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001025204 915pc $$0PC:(DE-HGF)0125$$2APC$$aDEAL: Elsevier 09/01/2023
001025204 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001025204 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
001025204 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-29T11:25:19Z
001025204 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-29T11:25:19Z
001025204 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001025204 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2021-01-29T11:25:19Z
001025204 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-09-02
001025204 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-09-02
001025204 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
001025204 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
001025204 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2025-01-07
001025204 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
001025204 920__ $$lyes
001025204 9201_ $$0I:(DE-Juel1)IAS-9-20201008$$kIAS-9$$lMaterials Data Science and Informatics$$x0
001025204 9801_ $$aFullTexts
001025204 980__ $$ajournal
001025204 980__ $$aVDB
001025204 980__ $$aUNRESTRICTED
001025204 980__ $$aI:(DE-Juel1)IAS-9-20201008
001025204 980__ $$aAPC