Journal Article FZJ-2024-02772

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Efficient surrogate models for materials science simulations: Machine learning-based prediction of microstructure properties

 ;  ;  ;  ;  ;

2024
Elsevier Amsterdam

Machine learning with applications 16, 100544 - () [10.1016/j.mlwa.2024.100544]

This record in other databases:  

Please use a persistent id in citations: doi:  doi:

Abstract: Determining, understanding, and predicting the so-called structure–property relation is an important task in many scientific disciplines, such as chemistry, biology, meteorology, physics, engineering, and materials science. Structure refers to the spatial distribution of, e.g., substances, material, or matter in general, while property is a resulting characteristic that usually depends in a non-trivial way on spatial details of the structure. Traditionally, forward simulations models have been used for such tasks. Recently, several machine learning algorithms have been applied in these scientific fields to enhance and accelerate simulation models or as surrogate models. In this work, we develop and investigate the applications of six machine learning techniques based on two different datasets from the domain of materials science: data from a two-dimensional Ising model for predicting the formation of magnetic domains and data representing the evolution of dual-phase microstructures from the Cahn–Hilliard model. We analyze the accuracy and robustness of all models and elucidate the reasons for the differences in their performances. The impact of including domain knowledge through tailored features is studied, and general recommendations based on the availability and quality of training data are derived from this.

Classification:

Contributing Institute(s):
  1. Materials Data Science and Informatics (IAS-9)
Research Program(s):
  1. 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) (POF4-511)

Appears in the scientific report 2024
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial CC BY-NC 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; Clarivate Analytics Master Journal List ; DOAJ Seal ; Emerging Sources Citation Index ; Fees ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IAS > IAS-9
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database
Open Access

 Record created 2024-04-15, last modified 2025-02-04


OpenAccess:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)