Hauptseite > Publikationsdatenbank > Impact of competing energy scales on the shell-filling sequence in elliptic bilayer graphene quantum dots > print |
001 | 1025623 | ||
005 | 20250203103421.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevB.108.125128 |2 doi |
024 | 7 | _ | |a 2469-9950 |2 ISSN |
024 | 7 | _ | |a 2469-9977 |2 ISSN |
024 | 7 | _ | |a 0163-1829 |2 ISSN |
024 | 7 | _ | |a 0556-2805 |2 ISSN |
024 | 7 | _ | |a 1095-3795 |2 ISSN |
024 | 7 | _ | |a 1098-0121 |2 ISSN |
024 | 7 | _ | |a 1538-4489 |2 ISSN |
024 | 7 | _ | |a 1550-235X |2 ISSN |
024 | 7 | _ | |a 2469-9969 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2024-03012 |2 datacite_doi |
037 | _ | _ | |a FZJ-2024-03012 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Möller, Sören |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Impact of competing energy scales on the shell-filling sequence in elliptic bilayer graphene quantum dots |
260 | _ | _ | |a Woodbury, NY |c 2023 |b Inst. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1714653857_24819 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a We report on a detailed investigation of the shell-filling sequence in electrostatically defined elliptic bilayer graphene quantum dots (QDs) in the regime of low charge carrier occupation, N≤12, by means of magnetotransport spectroscopy and numerical calculations. We show the necessity of including both short-range electron-electron interaction and wave-function-dependent valley g-factors for understanding the overall fourfold shell-filling sequence. These factors lead to an additional energy splitting at half filling of each orbital state and different energy shifts in out-of-plane magnetic fields. Analysis of 31 different bilayer graphene (BLG) QDs reveals that both valley g-factor and electron-electron interaction-induced energy splitting increase with decreasing QD size, validating theory. However, we find that the electrostatic charging energy of such gate-defined QDs does not correlate consistently with their size, indicating complex electrostatics. These findings offer significant insights for future BLG QD devices and circuit designs. |
536 | _ | _ | |a 5222 - Exploratory Qubits (POF4-522) |0 G:(DE-HGF)POF4-5222 |c POF4-522 |f POF IV |x 0 |
536 | _ | _ | |a GrapheneCore3 - Graphene Flagship Core Project 3 (881603) |0 G:(EU-Grant)881603 |c 881603 |f H2020-SGA-FET-GRAPHENE-2019 |x 1 |
536 | _ | _ | |a 2D4QT - 2D Materials for Quantum Technology (820254) |0 G:(EU-Grant)820254 |c 820254 |f ERC-2018-COG |x 2 |
536 | _ | _ | |a DFG project 390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769) |0 G:(GEPRIS)390534769 |c 390534769 |x 3 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Banszerus, L. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Knothe, A. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Valerius, L. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Hecker, K. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Icking, E. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Watanabe, K. |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Taniguchi, T. |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Volk, Christian |0 P:(DE-Juel1)187247 |b 8 |
700 | 1 | _ | |a Stampfer, C. |0 P:(DE-Juel1)180322 |b 9 |e Corresponding author |
773 | _ | _ | |a 10.1103/PhysRevB.108.125128 |g Vol. 108, no. 12, p. 125128 |0 PERI:(DE-600)2844160-6 |n 12 |p 125128 |t Physical review / B |v 108 |y 2023 |x 2469-9950 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1025623/files/PhysRevB.108.125128.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1025623/files/PhysRevB.108.125128.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1025623/files/PhysRevB.108.125128.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1025623/files/PhysRevB.108.125128.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1025623/files/PhysRevB.108.125128.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1025623 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 3 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 4 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 5 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)187247 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)180322 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-522 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Computing |9 G:(DE-HGF)POF4-5222 |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-27 |
915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV B : 2022 |d 2023-10-27 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-27 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-10-27 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-27 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|