001025738 001__ 1025738
001025738 005__ 20250204113847.0
001025738 0247_ $$2doi$$a10.3389/fninf.2024.1156683
001025738 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-03121
001025738 0247_ $$2pmid$$a38410682
001025738 0247_ $$2WOS$$aWOS:001174378600001
001025738 037__ $$aFZJ-2024-03121
001025738 082__ $$a610
001025738 1001_ $$0P:(DE-HGF)0$$aKusch, Lionel$$b0$$eCorresponding author
001025738 245__ $$aMultiscale co-simulation design pattern for neuroscience applications
001025738 260__ $$aLausanne$$bFrontiers Research Foundation$$c2024
001025738 3367_ $$2DRIVER$$aarticle
001025738 3367_ $$2DataCite$$aOutput Types/Journal article
001025738 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714718871_30347
001025738 3367_ $$2BibTeX$$aARTICLE
001025738 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025738 3367_ $$00$$2EndNote$$aJournal Article
001025738 520__ $$aIntegration of information across heterogeneous sources creates added scientific value. Interoperability of data, tools and models is, however, difficult to accomplish across spatial and temporal scales. Here we introduce the toolbox Parallel Co-Simulation, which enables the interoperation of simulators operating at different scales. We provide a software science co-design pattern and illustrate its functioning along a neuroscience example, in which individual regions of interest are simulated on the cellular level allowing us to study detailed mechanisms, while the remaining network is efficiently simulated on the population level. A workflow is illustrated for the use case of The Virtual Brain and NEST, in which the CA1 region of the cellular-level hippocampus of the mouse is embedded into a full brain network involving micro and macro electrode recordings. This new tool allows integrating knowledge across scales in the same simulation framework and validating them against multiscale experiments, thereby largely widening the explanatory power of computational models.
001025738 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001025738 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x1
001025738 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x2
001025738 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x3
001025738 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x4
001025738 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x5
001025738 536__ $$0G:(EU-Grant)800858$$aICEI - Interactive Computing E-Infrastructure for the Human Brain Project (800858)$$c800858$$fH2020-SGA-INFRA-FETFLAG-HBP$$x6
001025738 588__ $$aDataset connected to DataCite
001025738 7001_ $$0P:(DE-Juel1)165859$$aDiaz, Sandra$$b1$$ufzj
001025738 7001_ $$0P:(DE-Juel1)168169$$aKlijn, Wouter$$b2$$ufzj
001025738 7001_ $$0P:(DE-Juel1)164507$$aSontheimer, Kim$$b3$$ufzj
001025738 7001_ $$0P:(DE-HGF)0$$aBernard, Christophe$$b4
001025738 7001_ $$0P:(DE-Juel1)151166$$aMorrison, Abigail$$b5$$ufzj
001025738 7001_ $$0P:(DE-HGF)0$$aJirsa, Viktor$$b6$$eCorresponding author
001025738 773__ $$0PERI:(DE-600)2452979-5$$a10.3389/fninf.2024.1156683$$gVol. 18, p. 1156683$$p1156683$$tFrontiers in neuroinformatics$$v18$$x1662-5196$$y2024
001025738 8564_ $$uhttps://juser.fz-juelich.de/record/1025738/files/fninf-18-1156683.pdf$$yOpenAccess
001025738 8564_ $$uhttps://juser.fz-juelich.de/record/1025738/files/fninf-18-1156683.gif?subformat=icon$$xicon$$yOpenAccess
001025738 8564_ $$uhttps://juser.fz-juelich.de/record/1025738/files/fninf-18-1156683.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001025738 8564_ $$uhttps://juser.fz-juelich.de/record/1025738/files/fninf-18-1156683.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001025738 8564_ $$uhttps://juser.fz-juelich.de/record/1025738/files/fninf-18-1156683.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001025738 909CO $$ooai:juser.fz-juelich.de:1025738$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001025738 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165859$$aForschungszentrum Jülich$$b1$$kFZJ
001025738 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168169$$aForschungszentrum Jülich$$b2$$kFZJ
001025738 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164507$$aForschungszentrum Jülich$$b3$$kFZJ
001025738 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151166$$aForschungszentrum Jülich$$b5$$kFZJ
001025738 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001025738 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
001025738 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x2
001025738 9141_ $$y2024
001025738 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
001025738 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-23
001025738 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001025738 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
001025738 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-23
001025738 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001025738 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-23
001025738 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT NEUROINFORM : 2022$$d2024-12-27
001025738 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-27
001025738 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-27
001025738 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-01-11T06:51:00Z
001025738 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-01-11T06:51:00Z
001025738 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-01-11T06:51:00Z
001025738 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-27
001025738 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-27
001025738 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-27
001025738 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-27
001025738 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-27
001025738 920__ $$lyes
001025738 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001025738 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lComputational and Systems Neuroscience$$x1
001025738 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x2
001025738 980__ $$ajournal
001025738 980__ $$aVDB
001025738 980__ $$aUNRESTRICTED
001025738 980__ $$aI:(DE-Juel1)JSC-20090406
001025738 980__ $$aI:(DE-Juel1)IAS-6-20130828
001025738 980__ $$aI:(DE-Juel1)INM-6-20090406
001025738 9801_ $$aFullTexts