Home > Publications database > Multiscale co-simulation design pattern for neuroscience applications > print |
001 | 1025738 | ||
005 | 20250204113847.0 | ||
024 | 7 | _ | |a 10.3389/fninf.2024.1156683 |2 doi |
024 | 7 | _ | |a 10.34734/FZJ-2024-03121 |2 datacite_doi |
024 | 7 | _ | |a 38410682 |2 pmid |
024 | 7 | _ | |a WOS:001174378600001 |2 WOS |
037 | _ | _ | |a FZJ-2024-03121 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Kusch, Lionel |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Multiscale co-simulation design pattern for neuroscience applications |
260 | _ | _ | |a Lausanne |c 2024 |b Frontiers Research Foundation |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1714718871_30347 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Integration of information across heterogeneous sources creates added scientific value. Interoperability of data, tools and models is, however, difficult to accomplish across spatial and temporal scales. Here we introduce the toolbox Parallel Co-Simulation, which enables the interoperation of simulators operating at different scales. We provide a software science co-design pattern and illustrate its functioning along a neuroscience example, in which individual regions of interest are simulated on the cellular level allowing us to study detailed mechanisms, while the remaining network is efficiently simulated on the population level. A workflow is illustrated for the use case of The Virtual Brain and NEST, in which the CA1 region of the cellular-level hippocampus of the mouse is embedded into a full brain network involving micro and macro electrode recordings. This new tool allows integrating knowledge across scales in the same simulation framework and validating them against multiscale experiments, thereby largely widening the explanatory power of computational models. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a 5232 - Computational Principles (POF4-523) |0 G:(DE-HGF)POF4-5232 |c POF4-523 |f POF IV |x 1 |
536 | _ | _ | |a 5234 - Emerging NC Architectures (POF4-523) |0 G:(DE-HGF)POF4-5234 |c POF4-523 |f POF IV |x 2 |
536 | _ | _ | |a SLNS - SimLab Neuroscience (Helmholtz-SLNS) |0 G:(DE-Juel1)Helmholtz-SLNS |c Helmholtz-SLNS |x 3 |
536 | _ | _ | |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539) |0 G:(EU-Grant)945539 |c 945539 |f H2020-SGA-FETFLAG-HBP-2019 |x 4 |
536 | _ | _ | |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907) |0 G:(EU-Grant)785907 |c 785907 |f H2020-SGA-FETFLAG-HBP-2017 |x 5 |
536 | _ | _ | |a ICEI - Interactive Computing E-Infrastructure for the Human Brain Project (800858) |0 G:(EU-Grant)800858 |c 800858 |f H2020-SGA-INFRA-FETFLAG-HBP |x 6 |
588 | _ | _ | |a Dataset connected to DataCite |
700 | 1 | _ | |a Diaz, Sandra |0 P:(DE-Juel1)165859 |b 1 |u fzj |
700 | 1 | _ | |a Klijn, Wouter |0 P:(DE-Juel1)168169 |b 2 |u fzj |
700 | 1 | _ | |a Sontheimer, Kim |0 P:(DE-Juel1)164507 |b 3 |u fzj |
700 | 1 | _ | |a Bernard, Christophe |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Morrison, Abigail |0 P:(DE-Juel1)151166 |b 5 |u fzj |
700 | 1 | _ | |a Jirsa, Viktor |0 P:(DE-HGF)0 |b 6 |e Corresponding author |
773 | _ | _ | |a 10.3389/fninf.2024.1156683 |g Vol. 18, p. 1156683 |0 PERI:(DE-600)2452979-5 |p 1156683 |t Frontiers in neuroinformatics |v 18 |y 2024 |x 1662-5196 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1025738/files/fninf-18-1156683.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1025738/files/fninf-18-1156683.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1025738/files/fninf-18-1156683.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1025738/files/fninf-18-1156683.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1025738/files/fninf-18-1156683.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1025738 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)165859 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)168169 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)164507 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)151166 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5232 |x 1 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5234 |x 2 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-08-23 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-23 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-08-23 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-08-23 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b FRONT NEUROINFORM : 2022 |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-01-11T06:51:00Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-01-11T06:51:00Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2024-01-11T06:51:00Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-27 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-27 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-6-20130828 |k IAS-6 |l Computational and Systems Neuroscience |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-6-20090406 |k INM-6 |l Computational and Systems Neuroscience |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
980 | _ | _ | |a I:(DE-Juel1)INM-6-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|