001025800 001__ 1025800
001025800 005__ 20250203103309.0
001025800 0247_ $$2doi$$a10.48550/ARXIV.2305.06945
001025800 037__ $$aFZJ-2024-03163
001025800 1001_ $$0P:(DE-HGF)0$$aTebbe, David$$b0$$eCorresponding author
001025800 245__ $$aHyperspectral photoluminescence and reflectance microscopy of 2D materials
001025800 260__ $$barXiv$$c2023
001025800 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1714714420_31336
001025800 3367_ $$2ORCID$$aWORKING_PAPER
001025800 3367_ $$028$$2EndNote$$aElectronic Article
001025800 3367_ $$2DRIVER$$apreprint
001025800 3367_ $$2BibTeX$$aARTICLE
001025800 3367_ $$2DataCite$$aOutput Types/Working Paper
001025800 520__ $$aOptical micro-spectroscopy is an invaluable tool for studying and characterizing samples ranging from classical semiconductors to low-dimensional materials and heterostructures. To date, most implementations are based on point-scanning techniques, which are flexible and reliable, but slow. Here, we describe a setup for highly parallel acquisition of hyperspectral reflection and photoluminescence microscope images using a push-broom technique. Spatial as well as spectral distortions are characterized and their digital corrections are presented. We demonstrate close-to diffraction-limited spatial imaging performance and a spectral resolution limited by the spectrograph. The capabilities of the setup are demonstrated by recording a hyperspectral photoluminescence map of a CVD-grown MoSe$_2$-WSe$_2$ lateral heterostructure, from which we extract the luminescence energies, intensities and peak widths across the interface.
001025800 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001025800 588__ $$aDataset connected to DataCite
001025800 650_7 $$2Other$$aOptics (physics.optics)
001025800 650_7 $$2Other$$aMaterials Science (cond-mat.mtrl-sci)
001025800 650_7 $$2Other$$aFOS: Physical sciences
001025800 7001_ $$0P:(DE-HGF)0$$aSchütte, Marc$$b1
001025800 7001_ $$0P:(DE-HGF)0$$aKundu, Baisali$$b2
001025800 7001_ $$0P:(DE-Juel1)178028$$aBeschoten, Bernd$$b3$$ufzj
001025800 7001_ $$0P:(DE-HGF)0$$aSahoo, Prasana K.$$b4
001025800 7001_ $$0P:(DE-HGF)0$$aWaldecker, Lutz$$b5
001025800 773__ $$a10.48550/ARXIV.2305.06945
001025800 909CO $$ooai:juser.fz-juelich.de:1025800$$pVDB
001025800 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178028$$aForschungszentrum Jülich$$b3$$kFZJ
001025800 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001025800 9141_ $$y2024
001025800 920__ $$lyes
001025800 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x0
001025800 980__ $$apreprint
001025800 980__ $$aVDB
001025800 980__ $$aI:(DE-Juel1)PGI-11-20170113
001025800 980__ $$aUNRESTRICTED