001     1025929
005     20240712113129.0
024 7 _ |a 10.1002/cssc.202201169
|2 doi
024 7 _ |a 1864-5631
|2 ISSN
024 7 _ |a 1864-564X
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-03207
|2 datacite_doi
024 7 _ |a 36063139
|2 pmid
024 7 _ |a WOS:000862397700001
|2 WOS
037 _ _ |a FZJ-2024-03207
082 _ _ |a 540
100 1 _ |a Kröger, Till-Niklas
|b 0
245 _ _ |a State‐of‐Charge Distribution of Single‐Crystalline NMC532 Cathodes in Lithium‐Ion Batteries: A Critical Look at the Mesoscale
260 _ _ |a Weinheim
|c 2022
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1714648692_24819
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Unterstützt durch BMBF Projekt 03XP0237C.
520 _ _ |a The electrochemical response of layered lithium transition metal oxides LiMO2 [M=Ni, Mn, Co; e. g., Li(Ni0.5Mn0.3Co0.2)O2 (NMC532)] with single-crystalline architecture to slow and fast charging protocols and the implication of incomplete and heterogeneous redox reactions on the active material utilization during cycling were the subject of this work. The role of the active material size and the influence of the local microstructural and chemical ramifications in the composite electrode on the evolution of heterogeneous state of charge (SOC) distribution were deciphered. For this, classification-single-particle inductively coupled plasma optical emission spectroscopy (CL-SP-ICP-OES) was comprehensively supplemented by various post mortem analytical techniques. The presented results question the impact of surface-dependent failure mechanisms of single crystals for the evolution of SOC heterogeneity and identify the deficient structural flexibility of the composite electrode framework as the main driver for the observed non-uniform active material utilization.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Wölke, Mathis Jan
|b 1
700 1 _ |a Harte, Patrick
|b 2
700 1 _ |a Beuse, Thomas
|b 3
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 4
700 1 _ |a Nowak, Sascha
|0 0000-0003-1508-6073
|b 5
700 1 _ |a Wiemers-Meyer, Simon
|0 0000-0001-8608-4521
|b 6
|e Corresponding author
773 _ _ |a 10.1002/cssc.202201169
|g Vol. 15, no. 21, p. e202201169
|0 PERI:(DE-600)2411405-4
|n 21
|p e202201169
|t ChemSusChem
|v 15
|y 2022
|x 1864-5631
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1025929/files/ChemSusChem%20-%202022%20-%20Kr%C3%B6ger%20-%20State%E2%80%90of%E2%80%90Charge%20Distribution%20of%20Single%E2%80%90Crystalline%20NMC532%20Cathodes%20in%20Lithium%E2%80%90Ion%20Batteries%20.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1025929/files/ChemSusChem%20-%202022%20-%20Kr%C3%B6ger%20-%20State%E2%80%90of%E2%80%90Charge%20Distribution%20of%20Single%E2%80%90Crystalline%20NMC532%20Cathodes%20in%20Lithium%E2%80%90Ion%20Batteries%20.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1025929/files/ChemSusChem%20-%202022%20-%20Kr%C3%B6ger%20-%20State%E2%80%90of%E2%80%90Charge%20Distribution%20of%20Single%E2%80%90Crystalline%20NMC532%20Cathodes%20in%20Lithium%E2%80%90Ion%20Batteries%20.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1025929/files/ChemSusChem%20-%202022%20-%20Kr%C3%B6ger%20-%20State%E2%80%90of%E2%80%90Charge%20Distribution%20of%20Single%E2%80%90Crystalline%20NMC532%20Cathodes%20in%20Lithium%E2%80%90Ion%20Batteries%20.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1025929/files/ChemSusChem%20-%202022%20-%20Kr%C3%B6ger%20-%20State%E2%80%90of%E2%80%90Charge%20Distribution%20of%20Single%E2%80%90Crystalline%20NMC532%20Cathodes%20in%20Lithium%E2%80%90Ion%20Batteries%20.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1025929
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-25
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-25
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CHEMSUSCHEM : 2022
|d 2023-10-25
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-10-25
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEMSUSCHEM : 2022
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-25
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21