001     1026000
005     20250203103454.0
020 _ _ |a 9798400707858
024 7 _ |a 10.1145/3624062.3624159
|2 doi
024 7 _ |a 10.34734/FZJ-2024-03256
|2 datacite_doi
037 _ _ |a FZJ-2024-03256
100 1 _ |a Mateevitsi, Victor A.
|0 0000-0002-6677-7520
|b 0
111 2 _ |a Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis
|g SC-W 2023
|c Denver, CO
|d 2023-11-12 - 2023-11-17
|w USA
245 _ _ |a Scaling Computational Fluid Dynamics: In Situ Visualization of NekRS using SENSEI
260 _ _ |a New York, USA
|c 2023
|b Association for Computing Machinery
295 1 0 |a Proceedings of the SC '23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis - ACM New York, NY, USA, 2023
300 _ _ |a 862–867
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1714585530_354
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
520 _ _ |a In the realm of Computational Fluid Dynamics (CFD), the demand for memory and computation resources is extreme, necessitating the use of leadership-scale computing platforms for practical domain sizes. This intensive requirement renders traditional checkpointing methods ineffective due to the significant slowdown in simulations while saving state data to disk. As we progress towards exascale and GPU-driven High-Performance Computing (HPC) and confront larger problem sizes, the choice becomes increasingly stark: to compromise data fidelity or to reduce resolution. To navigate this challenge, this study advocates for the use of in situ analysis and visualization techniques. These allow more frequent data "snapshots" to be taken directly from memory, thus avoiding the need for disruptive checkpointing. We detail our approach of instrumenting NekRS, a GPU-focused thermal-fluid simulation code employing the spectral element method (SEM), and describe varied in situ and in transit strategies for data rendering. Additionally, we provide concrete scientific use-cases and report on runs performed on Polaris, Argonne Leadership Computing Facility’s (ALCF) 44 Petaflop supercomputer and Jülich Wizard for European Leadership Science (JUWELS) Booster, Jülich Supercomputing Centre’s (JSC) 71 Petaflop High Performance Computing (HPC) system, offering practical insight into the implications of our methodology.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
536 _ _ |a CoEC - Center of Excellence in Combustion (952181)
|0 G:(EU-Grant)952181
|c 952181
|f H2020-INFRAEDI-2019-1
|x 1
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Bode, Mathis
|0 P:(DE-Juel1)192255
|b 1
|u fzj
700 1 _ |a Ferrier, Nicola
|0 0000-0003-1444-0624
|b 2
700 1 _ |a Fischer, Paul
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Göbbert, Jens Henrik
|0 P:(DE-Juel1)168541
|b 4
700 1 _ |a Insley, Joseph A.
|0 0000-0002-6955-869X
|b 5
700 1 _ |a Lan, Yu-Hsiang
|0 0000-0002-1680-675X
|b 6
700 1 _ |a Min, Misun
|0 0000-0002-5646-5689
|b 7
700 1 _ |a Papka, Michael E.
|0 0000-0002-6418-5767
|b 8
700 1 _ |a Patel, Saumil
|0 0000-0003-0803-5761
|b 9
700 1 _ |a Rizzi, Silvio
|0 0000-0002-3804-2471
|b 10
700 1 _ |a Windgassen, Jonathan
|0 P:(DE-Juel1)185841
|b 11
770 _ _ |z 9798400707858
773 _ _ |a 10.1145/3624062.3624159
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1026000/files/2312.09888v2.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1026000/files/2312.09888v2.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1026000/files/2312.09888v2.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1026000/files/2312.09888v2.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1026000/files/2312.09888v2.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1026000
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)192255
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)168541
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)185841
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21