001026141 001__ 1026141
001026141 005__ 20240529111720.0
001026141 037__ $$aFZJ-2024-03301
001026141 1001_ $$aXu, Yifan$$b0
001026141 1112_ $$a87th Annual Meeting of the DPG and DPG Spring Meeting 2024 of the Condensed Matter Section (SKM)$$cTU Berlin$$d2024-03-17 - 2024-03-22$$wGermany
001026141 245__ $$aOxygen-Vacancies-Driven Resistive Switching in Epitaxial Fe3O4 Thin Films
001026141 260__ $$c2024
001026141 3367_ $$033$$2EndNote$$aConference Paper
001026141 3367_ $$2DataCite$$aOther
001026141 3367_ $$2BibTeX$$aINPROCEEDINGS
001026141 3367_ $$2DRIVER$$aconferenceObject
001026141 3367_ $$2ORCID$$aLECTURE_SPEECH
001026141 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1714730682_26324$$xInvited
001026141 520__ $$aResistive switching implies that the device can be switched between aHigh ResistanceState (HRS) and Low Resistance State (LRS) upon application of an electricfield. Fe3O4 emerges as a candidate for resistive switching due to the sensitivityof its magnetic and electronic properties on the presence of oxygen vacancies.Here we present the preparation and characterization of epitaxial Fe3O4 thinfilms grown on TiO2 - terminated Nb:SrTiO3 via pulsed laser deposition (PLD).We observe resistive switching using I-V measurements and magnetometry. Wepropose a mechanism in which redox reactions and the presence of oxygen vacanciesare responsible for the resistive switching.This effect shows potential fornext-generation magnetoionic device applications.
001026141 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
001026141 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1
001026141 7001_ $$0P:(DE-Juel1)184662$$aBednarski-Meinke, Connie$$b1$$ufzj
001026141 7001_ $$0P:(DE-Juel1)191430$$aTober, Steffen$$b2$$ufzj
001026141 7001_ $$0P:(DE-Juel1)187095$$aQdemat, Asmaa$$b3$$ufzj
001026141 7001_ $$0P:(DE-Juel1)130677$$aGunkel, Felix$$b4$$ufzj
001026141 7001_ $$0P:(DE-Juel1)130620$$aDittmann, Regina$$b5$$ufzj
001026141 7001_ $$0P:(DE-Juel1)145895$$aPetracic, Oleg$$b6$$ufzj
001026141 7001_ $$0P:(DE-Juel1)169789$$aHussein, Mai$$b7$$ufzj
001026141 909CO $$ooai:juser.fz-juelich.de:1026141$$pVDB
001026141 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184662$$aForschungszentrum Jülich$$b1$$kFZJ
001026141 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191430$$aForschungszentrum Jülich$$b2$$kFZJ
001026141 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187095$$aForschungszentrum Jülich$$b3$$kFZJ
001026141 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130677$$aForschungszentrum Jülich$$b4$$kFZJ
001026141 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich$$b5$$kFZJ
001026141 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145895$$aForschungszentrum Jülich$$b6$$kFZJ
001026141 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169789$$aForschungszentrum Jülich$$b7$$kFZJ
001026141 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
001026141 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1
001026141 9141_ $$y2024
001026141 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
001026141 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
001026141 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
001026141 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x3
001026141 980__ $$aconf
001026141 980__ $$aVDB
001026141 980__ $$aI:(DE-Juel1)JCNS-2-20110106
001026141 980__ $$aI:(DE-Juel1)PGI-4-20110106
001026141 980__ $$aI:(DE-82)080009_20140620
001026141 980__ $$aI:(DE-Juel1)PGI-7-20110106
001026141 980__ $$aUNRESTRICTED
001026141 981__ $$aI:(DE-Juel1)JCNS-2-20110106