001     1026619
005     20250204113856.0
024 7 _ |a 10.1021/acsami.4c02095
|2 doi
024 7 _ |a 1944-8244
|2 ISSN
024 7 _ |a 1944-8252
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-03473
|2 datacite_doi
024 7 _ |a 38649156
|2 pmid
024 7 _ |a WOS:001242182900001
|2 WOS
037 _ _ |a FZJ-2024-03473
082 _ _ |a 600
100 1 _ |a Roering, Philipp
|0 P:(DE-HGF)0
|b 0
245 _ _ |a External Pressure in Polymer-Based Lithium Metal Batteries: An Often-Neglected Criterion When Evaluating Cycling Performance?
260 _ _ |a Washington, DC
|c 2024
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1719210230_32506
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Solid-state batteries based on lithium metal anodes, solid electrolytes, and composite cathodes constitute a promising battery concept for achieving high energy density. Charge carrier transport within the cells is governed by solid− solid contacts, emphasizing the importance of well-designed interfaces. A key parameter for enhancing the interfacial contacts among electrode active materials and electrolytes comprises externally applied pressure onto the cell stack, particularly in the case of ceramic electrolytes. Reports exploring the impact of external pressure on polymer-based cells are, however, scarce due to overall better wetting behavior. In this work, the consequences of externally applied pressure in view of key performance indicators, including cell longevity, rate capability, and limiting current density in single-layer pouch-type NMC622||Li cells, are evaluated employing cross-linked poly(ethylene oxide), xPEO, and cross-linked cyclodextrin grafted poly(caprolactone), xGCD-PCL. Notably, externally applied pressure substantially changes the cell's electrochemical cycling performance, strongly depending on the mechanical properties of the considered polymers. Higher external pressure potentially enhances electrode− electrolyte interfaces, thereby boosting the rate capability of pouch-type cells, despite the fact that the cell longevity may be reduced upon plastic deformation of the polymer electrolytes when passing beyond intrinsic thresholds of compressive stress. For the softer xGCD-PCL membrane, cycling of cells is only feasible in the absence of external pressure, whereas in the case of xPEO, a trade-off between enhanced rate capability and minimal membrane deformation is achieved at cell pressures of ≤0.43 MPa, which is considerably lower and more practical compared to cells employing ceramic electrolytes with ≥5 MPa external pressure.
536 _ _ |a 1222 - Components and Cells (POF4-122)
|0 G:(DE-HGF)POF4-1222
|c POF4-122
|f POF IV
|x 0
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 1
536 _ _ |a FB2-POLY - Zellplattform Polymere (BMBF-13XP0429A)
|0 G:(DE-Juel1)BMBF-13XP0429A
|c BMBF-13XP0429A
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Overhoff, Gerrit Michael
|0 P:(DE-Juel1)176955
|b 1
|u fzj
700 1 _ |a Liu, Kun Ling
|0 P:(DE-Juel1)178047
|b 2
|u fzj
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 3
|u fzj
700 1 _ |a Brunklaus, Gunther
|0 P:(DE-Juel1)172047
|b 4
|e Corresponding author
773 _ _ |a 10.1021/acsami.4c02095
|g Vol. 16, no. 17, p. 21932 - 21942
|0 PERI:(DE-600)2467494-1
|n 17
|p 21932 - 21942
|t ACS applied materials & interfaces
|v 16
|y 2024
|x 1944-8244
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1026619/files/am-2024-02095w_R1.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1026619/files/roering-et-al-2024-external-pressure-in-polymer-based-lithium-metal-batteries-an-often-neglected-criterion-when.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1026619/files/am-2024-02095w_R1.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1026619/files/am-2024-02095w_R1.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1026619/files/am-2024-02095w_R1.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1026619/files/am-2024-02095w_R1.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1026619/files/roering-et-al-2024-external-pressure-in-polymer-based-lithium-metal-batteries-an-often-neglected-criterion-when.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1026619/files/roering-et-al-2024-external-pressure-in-polymer-based-lithium-metal-batteries-an-often-neglected-criterion-when.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1026619/files/roering-et-al-2024-external-pressure-in-polymer-based-lithium-metal-batteries-an-often-neglected-criterion-when.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1026619/files/roering-et-al-2024-external-pressure-in-polymer-based-lithium-metal-batteries-an-often-neglected-criterion-when.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1026619
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)176955
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)178047
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)166130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)172047
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1222
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 1
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a Helmholtz: American Chemical Society 01/01/2023
|0 PC:(DE-HGF)0122
|2 APC
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL MATER INTER : 2022
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-13
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS APPL MATER INTER : 2022
|d 2024-12-13
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21