001028662 001__ 1028662
001028662 005__ 20250310131243.0
001028662 0247_ $$2doi$$a10.1103/PhysRevB.107.075154
001028662 0247_ $$2ISSN$$a2469-9950
001028662 0247_ $$2ISSN$$a2469-9977
001028662 0247_ $$2ISSN$$a0163-1829
001028662 0247_ $$2ISSN$$a0556-2805
001028662 0247_ $$2ISSN$$a1095-3795
001028662 0247_ $$2ISSN$$a1098-0121
001028662 0247_ $$2ISSN$$a1538-4489
001028662 0247_ $$2ISSN$$a1550-235X
001028662 0247_ $$2ISSN$$a2469-9969
001028662 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-04729
001028662 0247_ $$2WOS$$aWOS:000944157700007
001028662 037__ $$aFZJ-2024-04729
001028662 082__ $$a530
001028662 1001_ $$0P:(DE-HGF)0$$aPeronaci, Francesco$$b0
001028662 245__ $$aMott memristors based on field-induced carrier avalanche multiplication
001028662 260__ $$aWoodbury, NY$$bInst.$$c2023
001028662 3367_ $$2DRIVER$$aarticle
001028662 3367_ $$2DataCite$$aOutput Types/Journal article
001028662 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1738850277_13173
001028662 3367_ $$2BibTeX$$aARTICLE
001028662 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001028662 3367_ $$00$$2EndNote$$aJournal Article
001028662 520__ $$aWe present a theory of Mott memristors whose working principle is the nonlinear carrier avalanche multiplication in Mott insulators subject to strong electric fields. The internal state of the memristor, which determines its resistance, is encoded in the density of doublon and hole excitations in the Mott insulator. In the current-voltage characteristic, insulating and conducting states are separated by a negative-differential-resistance region, leading to hysteretic behavior. Under oscillating voltage, the response of a voltage-controlled, nonpolar memristive system is obtained, with retarded current and pinched hysteresis loop. As a first step towards neuromorphic applications, we demonstrate self-sustained spiking oscillations in a circuit with a parallel capacitor. Being based on electronic excitations only, this memristor is up to several orders of magnitude faster than previous proposals relying on Joule heating or ionic drift.
001028662 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001028662 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001028662 7001_ $$0P:(DE-Juel1)191419$$aAmeli Kalkhouran, Sara$$b1
001028662 7001_ $$0P:(DE-HGF)0$$aTakayoshi, Shintaro$$b2
001028662 7001_ $$0P:(DE-HGF)0$$aLandsman, Alexandra$$b3
001028662 7001_ $$0P:(DE-HGF)0$$aOka, Takashi$$b4
001028662 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.107.075154$$gVol. 107, no. 7, p. 075154$$n7$$p075154$$tPhysical review / B$$v107$$x2469-9950$$y2023
001028662 8564_ $$uhttps://juser.fz-juelich.de/record/1028662/files/PhysRevB.107.075154.pdf$$yOpenAccess
001028662 909CO $$ooai:juser.fz-juelich.de:1028662$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001028662 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191419$$aForschungszentrum Jülich$$b1$$kFZJ
001028662 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001028662 9141_ $$y2024
001028662 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-10
001028662 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-10
001028662 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2024-12-10
001028662 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001028662 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-10
001028662 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2022$$d2024-12-10
001028662 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-10
001028662 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-10
001028662 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-10
001028662 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001028662 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-10
001028662 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-10
001028662 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-10
001028662 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-10
001028662 9201_ $$0I:(DE-Juel1)PGI-14-20210412$$kPGI-14$$lNeuromorphic Compute Nodes$$x0
001028662 9801_ $$aFullTexts
001028662 980__ $$ajournal
001028662 980__ $$aVDB
001028662 980__ $$aUNRESTRICTED
001028662 980__ $$aI:(DE-Juel1)PGI-14-20210412