001028695 001__ 1028695
001028695 005__ 20251204125432.0
001028695 0247_ $$2doi$$a10.1101/2024.06.13.598253
001028695 0247_ $$2doi$$a https://doi.org/10.1101/2024.06.13.598253
001028695 0247_ $$2doi$$ahttps://doi.org/10.1101/2024.06.13.598253
001028695 037__ $$aFZJ-2024-04752
001028695 041__ $$aEnglish
001028695 082__ $$a580
001028695 1001_ $$0P:(DE-Juel1)185995$$aBaker, Dirk N.$$b0
001028695 245__ $$aVRoot: An XR-Based Application for Manual Root System Architecture Reconstruction
001028695 260__ $$aWashington, D.C.$$bAmerican Association for the Advancement of Science$$c2025
001028695 3367_ $$2DRIVER$$aarticle
001028695 3367_ $$2DataCite$$aOutput Types/Journal article
001028695 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1764846575_31786
001028695 3367_ $$2BibTeX$$aARTICLE
001028695 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001028695 3367_ $$00$$2EndNote$$aJournal Article
001028695 520__ $$aThis article describes an immersive extended reality reconstruction tool for root system architectures from 3D volumetric scans of soil columns. We have conducted a laboratory user study to assess the performance of new users with our software in comparison to classical and established desktop software. We utilize a functional-structural plant model to derive a synthetic root architecture that serves as objective quantification for the root system architecture reconstruction. Additionally, we have collected quantitative feedback on our software in the form of standardized questionnaires. This work provides an overview of the extended reality software and the advantage of using immersive techniques for 3D data extraction in plant science. Through our formal study, we further provide a quantification of manual root system reconstruction accuracy. We observe an increase in root system architecture reconstruction accuracy (F1) compared to state-of-the-art desktop software and a more robust extraction quality.
001028695 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001028695 588__ $$aDataset connected to CrossRef
001028695 7001_ $$0P:(DE-Juel1)179508$$aSelzner, Tobias$$b1
001028695 7001_ $$0P:(DE-Juel1)168541$$aGöbbert, Jens Henrik$$b2
001028695 7001_ $$0P:(DE-Juel1)129394$$aScharr, Hanno$$b3$$ufzj
001028695 7001_ $$0P:(DE-Juel1)132239$$aRiedel, Morris$$b4
001028695 7001_ $$00000-0002-8041-5542$$aHvannberg, Ebba Þóra$$b5
001028695 7001_ $$0P:(DE-Juel1)157922$$aSchnepf, Andrea$$b6
001028695 7001_ $$00000-0003-3451-4977$$aZielasko, Daniel$$b7
001028695 773__ $$0PERI:(DE-600)2968615-5$$ahttps://doi.org/10.1101/2024.06.13.598253$$n2$$p100013$$tPlant phenomics$$v7$$x2097-0374$$y2025
001028695 8564_ $$uhttps://scholar.google.de/citations?view_op=view_citation&hl=de&user=RSaoKE0AAAAJ&sortby=pubdate&citation_for_view=RSaoKE0AAAAJ:PoWvk5oyLR8C
001028695 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185995$$aForschungszentrum Jülich$$b0$$kFZJ
001028695 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179508$$aForschungszentrum Jülich$$b1$$kFZJ
001028695 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168541$$aForschungszentrum Jülich$$b2$$kFZJ
001028695 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129394$$aForschungszentrum Jülich$$b3$$kFZJ
001028695 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132239$$aForschungszentrum Jülich$$b4$$kFZJ
001028695 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157922$$aForschungszentrum Jülich$$b6$$kFZJ
001028695 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001028695 9141_ $$y2025
001028695 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLANT PHENOMICS : 2022$$d2024-12-19
001028695 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-19
001028695 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-19
001028695 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-01-10T10:16:54Z
001028695 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-01-10T10:16:54Z
001028695 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2022-01-10T10:16:54Z
001028695 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2022-01-10T10:16:54Z
001028695 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-19
001028695 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2024-12-19
001028695 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-19
001028695 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-19
001028695 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-19
001028695 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-19
001028695 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-19
001028695 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-19
001028695 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPLANT PHENOMICS : 2022$$d2024-12-19
001028695 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-19
001028695 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-19
001028695 920__ $$lyes
001028695 9201_ $$0I:(DE-Juel1)IAS-8-20210421$$kIAS-8$$lDatenanalyse und Maschinenlernen$$x0
001028695 980__ $$ajournal
001028695 980__ $$aEDITORS
001028695 980__ $$aVDBINPRINT
001028695 980__ $$aI:(DE-Juel1)IAS-8-20210421
001028695 980__ $$aUNRESTRICTED