001     1028695
005     20251204125432.0
024 7 _ |a 10.1101/2024.06.13.598253
|2 doi
024 7 _ |a https://doi.org/10.1101/2024.06.13.598253
|2 doi
024 7 _ |a https://doi.org/10.1101/2024.06.13.598253
|2 doi
037 _ _ |a FZJ-2024-04752
041 _ _ |a English
082 _ _ |a 580
100 1 _ |a Baker, Dirk N.
|0 P:(DE-Juel1)185995
|b 0
245 _ _ |a VRoot: An XR-Based Application for Manual Root System Architecture Reconstruction
260 _ _ |a Washington, D.C.
|c 2025
|b American Association for the Advancement of Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1764846575_31786
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This article describes an immersive extended reality reconstruction tool for root system architectures from 3D volumetric scans of soil columns. We have conducted a laboratory user study to assess the performance of new users with our software in comparison to classical and established desktop software. We utilize a functional-structural plant model to derive a synthetic root architecture that serves as objective quantification for the root system architecture reconstruction. Additionally, we have collected quantitative feedback on our software in the form of standardized questionnaires. This work provides an overview of the extended reality software and the advantage of using immersive techniques for 3D data extraction in plant science. Through our formal study, we further provide a quantification of manual root system reconstruction accuracy. We observe an increase in root system architecture reconstruction accuracy (F1) compared to state-of-the-art desktop software and a more robust extraction quality.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Selzner, Tobias
|0 P:(DE-Juel1)179508
|b 1
700 1 _ |a Göbbert, Jens Henrik
|0 P:(DE-Juel1)168541
|b 2
700 1 _ |a Scharr, Hanno
|0 P:(DE-Juel1)129394
|b 3
|u fzj
700 1 _ |a Riedel, Morris
|0 P:(DE-Juel1)132239
|b 4
700 1 _ |a Hvannberg, Ebba Þóra
|0 0000-0002-8041-5542
|b 5
700 1 _ |a Schnepf, Andrea
|0 P:(DE-Juel1)157922
|b 6
700 1 _ |a Zielasko, Daniel
|0 0000-0003-3451-4977
|b 7
773 _ _ |a https://doi.org/10.1101/2024.06.13.598253
|0 PERI:(DE-600)2968615-5
|n 2
|p 100013
|t Plant phenomics
|v 7
|y 2025
|x 2097-0374
856 4 _ |u https://scholar.google.de/citations?view_op=view_citation&hl=de&user=RSaoKE0AAAAJ&sortby=pubdate&citation_for_view=RSaoKE0AAAAJ:PoWvk5oyLR8C
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)185995
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)179508
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)168541
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129394
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)132239
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)157922
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
914 1 _ |y 2025
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLANT PHENOMICS : 2022
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-01-10T10:16:54Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-01-10T10:16:54Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2022-01-10T10:16:54Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2022-01-10T10:16:54Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-19
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-19
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PLANT PHENOMICS : 2022
|d 2024-12-19
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-19
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-19
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-8-20210421
|k IAS-8
|l Datenanalyse und Maschinenlernen
|x 0
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a I:(DE-Juel1)IAS-8-20210421
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21