| Hauptseite > Online First > VRoot: An XR-Based Application for Manual Root System Architecture Reconstruction > print |
| 001 | 1028695 | ||
| 005 | 20251204125432.0 | ||
| 024 | 7 | _ | |a 10.1101/2024.06.13.598253 |2 doi |
| 024 | 7 | _ | |a https://doi.org/10.1101/2024.06.13.598253 |2 doi |
| 024 | 7 | _ | |a https://doi.org/10.1101/2024.06.13.598253 |2 doi |
| 037 | _ | _ | |a FZJ-2024-04752 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 580 |
| 100 | 1 | _ | |a Baker, Dirk N. |0 P:(DE-Juel1)185995 |b 0 |
| 245 | _ | _ | |a VRoot: An XR-Based Application for Manual Root System Architecture Reconstruction |
| 260 | _ | _ | |a Washington, D.C. |c 2025 |b American Association for the Advancement of Science |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1764846575_31786 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a This article describes an immersive extended reality reconstruction tool for root system architectures from 3D volumetric scans of soil columns. We have conducted a laboratory user study to assess the performance of new users with our software in comparison to classical and established desktop software. We utilize a functional-structural plant model to derive a synthetic root architecture that serves as objective quantification for the root system architecture reconstruction. Additionally, we have collected quantitative feedback on our software in the form of standardized questionnaires. This work provides an overview of the extended reality software and the advantage of using immersive techniques for 3D data extraction in plant science. Through our formal study, we further provide a quantification of manual root system reconstruction accuracy. We observe an increase in root system architecture reconstruction accuracy (F1) compared to state-of-the-art desktop software and a more robust extraction quality. |
| 536 | _ | _ | |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5112 |c POF4-511 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Selzner, Tobias |0 P:(DE-Juel1)179508 |b 1 |
| 700 | 1 | _ | |a Göbbert, Jens Henrik |0 P:(DE-Juel1)168541 |b 2 |
| 700 | 1 | _ | |a Scharr, Hanno |0 P:(DE-Juel1)129394 |b 3 |u fzj |
| 700 | 1 | _ | |a Riedel, Morris |0 P:(DE-Juel1)132239 |b 4 |
| 700 | 1 | _ | |a Hvannberg, Ebba Þóra |0 0000-0002-8041-5542 |b 5 |
| 700 | 1 | _ | |a Schnepf, Andrea |0 P:(DE-Juel1)157922 |b 6 |
| 700 | 1 | _ | |a Zielasko, Daniel |0 0000-0003-3451-4977 |b 7 |
| 773 | _ | _ | |a https://doi.org/10.1101/2024.06.13.598253 |0 PERI:(DE-600)2968615-5 |n 2 |p 100013 |t Plant phenomics |v 7 |y 2025 |x 2097-0374 |
| 856 | 4 | _ | |u https://scholar.google.de/citations?view_op=view_citation&hl=de&user=RSaoKE0AAAAJ&sortby=pubdate&citation_for_view=RSaoKE0AAAAJ:PoWvk5oyLR8C |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)185995 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)179508 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)168541 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)129394 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)132239 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)157922 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5112 |x 0 |
| 914 | 1 | _ | |y 2025 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PLANT PHENOMICS : 2022 |d 2024-12-19 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-19 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-19 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2022-01-10T10:16:54Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2022-01-10T10:16:54Z |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2022-01-10T10:16:54Z |
| 915 | _ | _ | |a Creative Commons Attribution CC BY (No Version) |0 LIC:(DE-HGF)CCBYNV |2 V:(DE-HGF) |b DOAJ |d 2022-01-10T10:16:54Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-19 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2024-12-19 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-19 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-19 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-19 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2024-12-19 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-19 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-19 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b PLANT PHENOMICS : 2022 |d 2024-12-19 |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2024-12-19 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2024-12-19 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IAS-8-20210421 |k IAS-8 |l Datenanalyse und Maschinenlernen |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a EDITORS |
| 980 | _ | _ | |a VDBINPRINT |
| 980 | _ | _ | |a I:(DE-Juel1)IAS-8-20210421 |
| 980 | _ | _ | |a UNRESTRICTED |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|