001028749 001__ 1028749
001028749 005__ 20240717202036.0
001028749 037__ $$aFZJ-2024-04797
001028749 1001_ $$0P:(DE-HGF)0$$aLiu, Y.$$b0
001028749 1112_ $$a16th European SOFC & SOE Forum$$cLucerne$$d2024-07-02 - 2024-07-05$$wSwitzerland
001028749 245__ $$aAccelerated Stress Test and Quantitative Analysis of Degradation in Nickel/Ceria Fuel Electrodes
001028749 260__ $$c2024
001028749 300__ $$aB1612, 1-12
001028749 3367_ $$2ORCID$$aCONFERENCE_PAPER
001028749 3367_ $$033$$2EndNote$$aConference Paper
001028749 3367_ $$2BibTeX$$aINPROCEEDINGS
001028749 3367_ $$2DRIVER$$aconferenceObject
001028749 3367_ $$2DataCite$$aOutput Types/Conference Paper
001028749 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1721204607_13387
001028749 520__ $$aIn targeting lifetimes of 10 years, accelerated stress testing becomes inevitable forensuring the longevity and successful market introduction of SOCs. These elevatedstressors can impact various degradation mechanisms to differing extents and may pushthe cell into unstable operating regimes, resulting in behaviors irrelevant to nominaloperating conditions. Consequently, designing such tests presents a significant challenge.For SOCs aiming for operating temperatures below 600°C, elevated operatingtemperatures are necessary to accelerate aging due to microstructural changes.Accelerated stress tests are tailored for state-of-the-art screen-printed Ni/GDC cermet fuelelectrodes, utilizing symmetrical cells to mitigate the impact of the air electrode. Thesecells operate at temperatures ranging from 600 to 750°C with a high steam content of50%. Electrode performance over time is monitored using electrochemical impedancespectroscopy. Temporal changes in loss processes are identified through DRT analysis,followed by fitting to an equivalent circuit model. We introduce a quantitative analysismethod and a corresponding aging model for direct comparison between degradationunder different stressors.
001028749 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001028749 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
001028749 7001_ $$0P:(DE-Juel1)189092$$aJuckel, Martin$$b1$$ufzj
001028749 7001_ $$0P:(DE-Juel1)129636$$aMenzler, Norbert H.$$b2$$ufzj
001028749 7001_ $$0P:(DE-HGF)0$$aWeber, A.$$b3
001028749 909CO $$ooai:juser.fz-juelich.de:1028749$$pVDB
001028749 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)189092$$aForschungszentrum Jülich$$b1$$kFZJ
001028749 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129636$$aForschungszentrum Jülich$$b2$$kFZJ
001028749 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001028749 9141_ $$y2024
001028749 920__ $$lyes
001028749 9201_ $$0I:(DE-Juel1)IMD-2-20101013$$kIMD-2$$lWerkstoffsynthese und Herstellungsverfahren$$x0
001028749 980__ $$acontrib
001028749 980__ $$aVDB
001028749 980__ $$aI:(DE-Juel1)IMD-2-20101013
001028749 980__ $$aUNRESTRICTED