000010293 001__ 10293
000010293 005__ 20180208215740.0
000010293 0247_ $$2DOI$$a10.1016/j.susc.2009.12.006
000010293 0247_ $$2WOS$$aWOS:000274979000028
000010293 037__ $$aPreJuSER-10293
000010293 041__ $$aeng
000010293 082__ $$a540
000010293 084__ $$2WoS$$aChemistry, Physical
000010293 084__ $$2WoS$$aPhysics, Condensed Matter
000010293 1001_ $$0P:(DE-HGF)0$$aBrona, J.$$b0
000010293 245__ $$aFormation of pits during growth of Si/Ge nanostructures
000010293 260__ $$aAmsterdam$$bElsevier$$c2010
000010293 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000010293 3367_ $$2DataCite$$aOutput Types/Journal article
000010293 3367_ $$00$$2EndNote$$aJournal Article
000010293 3367_ $$2BibTeX$$aARTICLE
000010293 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000010293 3367_ $$2DRIVER$$aarticle
000010293 440_0 $$05673$$aSurface Science$$v604$$x0039-6028$$y3
000010293 500__ $$aRecord converted from VDB: 12.11.2012
000010293 520__ $$aAlternating deposition of Ge and Si in the step-flow growth regime using Bi acting as a surfactant can lead to a spontaneous formation of one atomic layer deep pits in the area of surface covered by Ge. During Si growth Ge atoms of the epitaxial 2D Ge layer move to Si step edges where stronger bonds with Si atoms are formed. Appropriate growth conditions can suppress or enhance the pit formation effect and consequently a new type of self-organized nanostructures can be formed. (C) 2009 Elsevier BY. All rights reserved.
000010293 536__ $$0G:(DE-Juel1)FUEK414$$2G:(DE-HGF)$$aKondensierte Materie$$cP54$$x0
000010293 588__ $$aDataset connected to Web of Science
000010293 65320 $$2Author$$aNanostructures
000010293 65320 $$2Author$$aSelf-assembly
000010293 65320 $$2Author$$aSilicon
000010293 65320 $$2Author$$aGermanium
000010293 65320 $$2Author$$aScanning tunneling microscopy
000010293 650_7 $$2WoSType$$aJ
000010293 7001_ $$0P:(DE-Juel1)VDB10516$$aCherepanov, V.$$b1$$uFZJ
000010293 7001_ $$0P:(DE-Juel1)VDB71268$$aRomanyuk, K.$$b2$$uFZJ
000010293 7001_ $$0P:(DE-Juel1)VDB5601$$aVoigtländer, B.$$b3$$uFZJ
000010293 773__ $$0PERI:(DE-600)1479030-0$$a10.1016/j.susc.2009.12.006$$gVol. 604$$p424-427$$q604$$tSurface science$$v604$$x0039-6028$$y2010
000010293 8567_ $$uhttp://dx.doi.org/10.1016/j.susc.2009.12.006
000010293 909CO $$ooai:juser.fz-juelich.de:10293$$pVDB
000010293 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000010293 9141_ $$y2010
000010293 9131_ $$0G:(DE-Juel1)FUEK414$$bMaterie$$kP54$$lKondensierte Materie$$vKondensierte Materie$$x0$$zentfällt   bis 2009
000010293 9201_ $$0I:(DE-Juel1)VDB801$$d31.12.2010$$gIBN$$kIBN-3$$lGrenz- und Oberflächen$$x0
000010293 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x1
000010293 970__ $$aVDB:(DE-Juel1)120552
000010293 980__ $$aVDB
000010293 980__ $$aConvertedRecord
000010293 980__ $$ajournal
000010293 980__ $$aI:(DE-Juel1)PGI-3-20110106
000010293 980__ $$aI:(DE-82)080009_20140620
000010293 980__ $$aUNRESTRICTED
000010293 981__ $$aI:(DE-Juel1)PGI-3-20110106
000010293 981__ $$aI:(DE-Juel1)VDB881