000010293 001__ 10293 000010293 005__ 20180208215740.0 000010293 0247_ $$2DOI$$a10.1016/j.susc.2009.12.006 000010293 0247_ $$2WOS$$aWOS:000274979000028 000010293 037__ $$aPreJuSER-10293 000010293 041__ $$aeng 000010293 082__ $$a540 000010293 084__ $$2WoS$$aChemistry, Physical 000010293 084__ $$2WoS$$aPhysics, Condensed Matter 000010293 1001_ $$0P:(DE-HGF)0$$aBrona, J.$$b0 000010293 245__ $$aFormation of pits during growth of Si/Ge nanostructures 000010293 260__ $$aAmsterdam$$bElsevier$$c2010 000010293 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000010293 3367_ $$2DataCite$$aOutput Types/Journal article 000010293 3367_ $$00$$2EndNote$$aJournal Article 000010293 3367_ $$2BibTeX$$aARTICLE 000010293 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000010293 3367_ $$2DRIVER$$aarticle 000010293 440_0 $$05673$$aSurface Science$$v604$$x0039-6028$$y3 000010293 500__ $$aRecord converted from VDB: 12.11.2012 000010293 520__ $$aAlternating deposition of Ge and Si in the step-flow growth regime using Bi acting as a surfactant can lead to a spontaneous formation of one atomic layer deep pits in the area of surface covered by Ge. During Si growth Ge atoms of the epitaxial 2D Ge layer move to Si step edges where stronger bonds with Si atoms are formed. Appropriate growth conditions can suppress or enhance the pit formation effect and consequently a new type of self-organized nanostructures can be formed. (C) 2009 Elsevier BY. All rights reserved. 000010293 536__ $$0G:(DE-Juel1)FUEK414$$2G:(DE-HGF)$$aKondensierte Materie$$cP54$$x0 000010293 588__ $$aDataset connected to Web of Science 000010293 65320 $$2Author$$aNanostructures 000010293 65320 $$2Author$$aSelf-assembly 000010293 65320 $$2Author$$aSilicon 000010293 65320 $$2Author$$aGermanium 000010293 65320 $$2Author$$aScanning tunneling microscopy 000010293 650_7 $$2WoSType$$aJ 000010293 7001_ $$0P:(DE-Juel1)VDB10516$$aCherepanov, V.$$b1$$uFZJ 000010293 7001_ $$0P:(DE-Juel1)VDB71268$$aRomanyuk, K.$$b2$$uFZJ 000010293 7001_ $$0P:(DE-Juel1)VDB5601$$aVoigtländer, B.$$b3$$uFZJ 000010293 773__ $$0PERI:(DE-600)1479030-0$$a10.1016/j.susc.2009.12.006$$gVol. 604$$p424-427$$q604$$tSurface science$$v604$$x0039-6028$$y2010 000010293 8567_ $$uhttp://dx.doi.org/10.1016/j.susc.2009.12.006 000010293 909CO $$ooai:juser.fz-juelich.de:10293$$pVDB 000010293 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000010293 9141_ $$y2010 000010293 9131_ $$0G:(DE-Juel1)FUEK414$$bMaterie$$kP54$$lKondensierte Materie$$vKondensierte Materie$$x0$$zentfällt bis 2009 000010293 9201_ $$0I:(DE-Juel1)VDB801$$d31.12.2010$$gIBN$$kIBN-3$$lGrenz- und Oberflächen$$x0 000010293 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x1 000010293 970__ $$aVDB:(DE-Juel1)120552 000010293 980__ $$aVDB 000010293 980__ $$aConvertedRecord 000010293 980__ $$ajournal 000010293 980__ $$aI:(DE-Juel1)PGI-3-20110106 000010293 980__ $$aI:(DE-82)080009_20140620 000010293 980__ $$aUNRESTRICTED 000010293 981__ $$aI:(DE-Juel1)PGI-3-20110106 000010293 981__ $$aI:(DE-Juel1)VDB881