001029551 001__ 1029551
001029551 005__ 20250203133156.0
001029551 0247_ $$2doi$$a10.1038/s41565-024-01724-z
001029551 0247_ $$2ISSN$$a1748-3387
001029551 0247_ $$2ISSN$$a1748-3395
001029551 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05163
001029551 0247_ $$2pmid$$a39054385
001029551 0247_ $$2WOS$$aWOS:001277219200001
001029551 037__ $$aFZJ-2024-05163
001029551 082__ $$a600
001029551 1001_ $$0P:(DE-Juel1)180950$$aEsat, Taner$$b0$$eCorresponding author$$ufzj
001029551 245__ $$aA quantum sensor for atomic-scale electric and magnetic fields
001029551 260__ $$aLondon [u.a.]$$bNature Publishing Group$$c2024
001029551 3367_ $$2DRIVER$$aarticle
001029551 3367_ $$2DataCite$$aOutput Types/Journal article
001029551 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1730281693_26960
001029551 3367_ $$2BibTeX$$aARTICLE
001029551 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001029551 3367_ $$00$$2EndNote$$aJournal Article
001029551 520__ $$aThe detection of faint magnetic fields from single-electron and nuclear spinsat the atomic scale is a long-standing challenge in physics. While currentmobile quantum sensors achieve single-electron spin sensitivity, atomicspatial resolution remains elusive for existing techniques. Here we fabricate asingle-molecule quantum sensor at the apex of the metallic tip of a scanningtunnelling microscope by attaching Fe atoms and a PTCDA (3,4,9,10-perylenetetracarboxylic-dianhydride) molecule to the tip apex. We address themolecular spin by electron spin resonance and achieve ~100 neV resolutionin energy. In a proof-of-principle experiment, we measure the magnetic andelectric dipole fields emanating from a single Fe atom and an Ag dimer on anAg(111) surface with sub-angstrom spatial resolution. Our method enablesatomic-scale quantum sensing experiments of electric and magnetic fields onconducting surfaces and may find applications in the sensing of spin-labelledbiomolecules and of spin textures in quantum materials.
001029551 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001029551 588__ $$aDataset connected to DataCite
001029551 7001_ $$0P:(DE-Juel1)206852$$aOh, Jeongmin$$b1
001029551 7001_ $$0P:(DE-HGF)0$$aBorodin, Dmitriy$$b2
001029551 7001_ $$0P:(DE-HGF)0$$aHeinrich, Andreas J.$$b3$$eCorresponding author
001029551 7001_ $$0P:(DE-HGF)0$$aStefan Tautz, F.$$b4
001029551 7001_ $$0P:(DE-HGF)0$$aBae, Yujeong$$b5$$eCorresponding author
001029551 7001_ $$0P:(DE-Juel1)128792$$aTemirov, Ruslan$$b6$$eLast author
001029551 773__ $$0PERI:(DE-600)2254964-X$$a10.1038/s41565-024-01724-z$$p1466–1471$$tNature nanotechnology$$v19$$x1748-3387$$y2024
001029551 8564_ $$uhttps://juser.fz-juelich.de/record/1029551/files/s41565-024-01724-z.pdf$$yOpenAccess
001029551 8767_ $$d2024-11-27$$eHybrid-OA$$jPublish and Read
001029551 909CO $$ooai:juser.fz-juelich.de:1029551$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001029551 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180950$$aForschungszentrum Jülich$$b0$$kFZJ
001029551 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)206852$$aForschungszentrum Jülich$$b1$$kFZJ
001029551 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b3$$kExtern
001029551 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b4$$kFZJ
001029551 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128792$$aForschungszentrum Jülich$$b6$$kFZJ
001029551 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001029551 9141_ $$y2024
001029551 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001029551 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001029551 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001029551 915pc $$0PC:(DE-HGF)0114$$2APC$$aGerman academic consortium, administered by Max Planck Digital Library: Springer Nature 2021
001029551 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-25
001029551 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001029551 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-25
001029551 915__ $$0StatID:(DE-HGF)3003$$2StatID$$aDEAL Nature$$d2023-08-25$$wger
001029551 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001029551 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-11$$wger
001029551 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-11
001029551 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-11
001029551 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-11
001029551 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-11
001029551 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-11
001029551 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-11
001029551 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT NANOTECHNOL : 2022$$d2024-12-11
001029551 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-11
001029551 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-11
001029551 915__ $$0StatID:(DE-HGF)9930$$2StatID$$aIF >= 30$$bNAT NANOTECHNOL : 2022$$d2024-12-11
001029551 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
001029551 9801_ $$aFullTexts
001029551 980__ $$ajournal
001029551 980__ $$aVDB
001029551 980__ $$aUNRESTRICTED
001029551 980__ $$aI:(DE-Juel1)PGI-3-20110106
001029551 980__ $$aAPC