Hauptseite > Publikationsdatenbank > A quantum sensor for atomic-scale electric and magnetic fields > print |
001 | 1029551 | ||
005 | 20250203133156.0 | ||
024 | 7 | _ | |a 10.1038/s41565-024-01724-z |2 doi |
024 | 7 | _ | |a 1748-3387 |2 ISSN |
024 | 7 | _ | |a 1748-3395 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2024-05163 |2 datacite_doi |
024 | 7 | _ | |a 39054385 |2 pmid |
024 | 7 | _ | |a WOS:001277219200001 |2 WOS |
037 | _ | _ | |a FZJ-2024-05163 |
082 | _ | _ | |a 600 |
100 | 1 | _ | |a Esat, Taner |0 P:(DE-Juel1)180950 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a A quantum sensor for atomic-scale electric and magnetic fields |
260 | _ | _ | |a London [u.a.] |c 2024 |b Nature Publishing Group |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1730281693_26960 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The detection of faint magnetic fields from single-electron and nuclear spinsat the atomic scale is a long-standing challenge in physics. While currentmobile quantum sensors achieve single-electron spin sensitivity, atomicspatial resolution remains elusive for existing techniques. Here we fabricate asingle-molecule quantum sensor at the apex of the metallic tip of a scanningtunnelling microscope by attaching Fe atoms and a PTCDA (3,4,9,10-perylenetetracarboxylic-dianhydride) molecule to the tip apex. We address themolecular spin by electron spin resonance and achieve ~100 neV resolutionin energy. In a proof-of-principle experiment, we measure the magnetic andelectric dipole fields emanating from a single Fe atom and an Ag dimer on anAg(111) surface with sub-angstrom spatial resolution. Our method enablesatomic-scale quantum sensing experiments of electric and magnetic fields onconducting surfaces and may find applications in the sensing of spin-labelledbiomolecules and of spin textures in quantum materials. |
536 | _ | _ | |a 5213 - Quantum Nanoscience (POF4-521) |0 G:(DE-HGF)POF4-5213 |c POF4-521 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to DataCite |
700 | 1 | _ | |a Oh, Jeongmin |0 P:(DE-Juel1)206852 |b 1 |
700 | 1 | _ | |a Borodin, Dmitriy |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Heinrich, Andreas J. |0 P:(DE-HGF)0 |b 3 |e Corresponding author |
700 | 1 | _ | |a Stefan Tautz, F. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Bae, Yujeong |0 P:(DE-HGF)0 |b 5 |e Corresponding author |
700 | 1 | _ | |a Temirov, Ruslan |0 P:(DE-Juel1)128792 |b 6 |e Last author |
773 | _ | _ | |a 10.1038/s41565-024-01724-z |0 PERI:(DE-600)2254964-X |p 1466–1471 |t Nature nanotechnology |v 19 |y 2024 |x 1748-3387 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1029551/files/s41565-024-01724-z.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1029551 |p openaire |p open_access |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)180950 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)206852 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)128792 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-521 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Materials |9 G:(DE-HGF)POF4-5213 |x 0 |
914 | 1 | _ | |y 2024 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a German academic consortium, administered by Max Planck Digital Library: Springer Nature 2021 |2 APC |0 PC:(DE-HGF)0114 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-25 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-25 |
915 | _ | _ | |a DEAL Nature |0 StatID:(DE-HGF)3003 |2 StatID |d 2023-08-25 |w ger |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2024-12-11 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-11 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT NANOTECHNOL : 2022 |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-11 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-11 |
915 | _ | _ | |a IF >= 30 |0 StatID:(DE-HGF)9930 |2 StatID |b NAT NANOTECHNOL : 2022 |d 2024-12-11 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-3-20110106 |k PGI-3 |l Quantum Nanoscience |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-3-20110106 |
980 | _ | _ | |a APC |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|