001031216 001__ 1031216
001031216 005__ 20250414120448.0
001031216 0247_ $$2doi$$a10.1038/s41467-024-52403-5
001031216 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05612
001031216 0247_ $$2pmid$$a39277607
001031216 0247_ $$2WOS$$aWOS:001457649000008
001031216 037__ $$aFZJ-2024-05612
001031216 082__ $$a500
001031216 1001_ $$aKüçükoğlu, Berk$$b0
001031216 245__ $$aLow-dose cryo-electron ptychography of proteins at sub-nanometer resolution
001031216 260__ $$a[London]$$bNature Publishing Group UK$$c2024
001031216 3367_ $$2DRIVER$$aarticle
001031216 3367_ $$2DataCite$$aOutput Types/Journal article
001031216 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1726831227_3040
001031216 3367_ $$2BibTeX$$aARTICLE
001031216 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001031216 3367_ $$00$$2EndNote$$aJournal Article
001031216 520__ $$aCryo-transmission electron microscopy (cryo-EM) of frozen hydrated specimens is an efficient method for the structural analysis of purified biological molecules. However, cryo-EM and cryo-electron tomography are limited by the low signal-to-noise ratio (SNR) of recorded images, making detection of smaller particles challenging. For dose-resilient samples often studied in the physical sciences, electron ptychography – a coherent diffractive imaging technique using 4D scanning transmission electron microscopy (4D-STEM) – has recently demonstrated excellent SNR and resolution down to tens of picometers for thin specimens imaged at room temperature. Here we apply 4D-STEM and ptychographic data analysis to frozen hydrated proteins, reaching sub-nanometer resolution 3D reconstructions. We employ low-dose cryo-EM with an aberration-corrected, convergent electron beam to collect 4D-STEM data for our reconstructions. The high frame rate of the electron detector allows us to record large datasets of electron diffraction patterns with substantial overlaps between the interaction volumes of adjacent scan positions, from which the scattering potentials of the samples are iteratively reconstructed. The reconstructed micrographs show strong SNR enabling the reconstruction of the structure of apoferritin protein at up to 5.8 Å resolution. We also show structural analysis of the Phi92 capsid and sheath, tobacco mosaic virus, and bacteriorhodopsin at slightly lower resolutions.
001031216 536__ $$0G:(DE-HGF)POF4-5352$$a5352 - Understanding the Functionality of Soft Matter and Biomolecular Systems (POF4-535)$$cPOF4-535$$fPOF IV$$x0
001031216 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x1
001031216 536__ $$0G:(DE-Juel-1)DE002325$$a4D-BioSTEM (DE002325)$$cDE002325$$x2
001031216 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001031216 7001_ $$aMohammed, Inayathulla$$b1
001031216 7001_ $$00000-0002-3664-8277$$aGuerrero-Ferreira, Ricardo C.$$b2
001031216 7001_ $$aRibet, Stephanie M.$$b3
001031216 7001_ $$00000-0001-8338-3323$$aVarnavides, Georgios$$b4
001031216 7001_ $$0P:(DE-Juel1)186015$$aLeidl, Max Leo$$b5
001031216 7001_ $$00000-0002-9040-7597$$aLau, Kelvin$$b6
001031216 7001_ $$aNazarov, Sergey$$b7
001031216 7001_ $$00000-0003-2607-7121$$aMyasnikov, Alexander$$b8
001031216 7001_ $$aKube, Massimo$$b9
001031216 7001_ $$aRadecke, Julika$$b10
001031216 7001_ $$0P:(DE-Juel1)173949$$aSachse, Carsten$$b11
001031216 7001_ $$0P:(DE-Juel1)165314$$aMüller-Caspary, Knut$$b12
001031216 7001_ $$00000-0003-2348-8558$$aOphus, Colin$$b13
001031216 7001_ $$00000-0002-1185-4592$$aStahlberg, Henning$$b14$$eCorresponding author
001031216 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-024-52403-5$$gVol. 15, no. 1, p. 8062$$n1$$p8062$$tNature Communications$$v15$$x2041-1723$$y2024
001031216 8564_ $$uhttps://juser.fz-juelich.de/record/1031216/files/Low-dose%20cryo-electron%20ptychography%20of%20proteins.pdf$$yOpenAccess
001031216 8564_ $$uhttps://juser.fz-juelich.de/record/1031216/files/Low-dose%20cryo-electron%20ptychography%20of%20proteins.gif?subformat=icon$$xicon$$yOpenAccess
001031216 8564_ $$uhttps://juser.fz-juelich.de/record/1031216/files/Low-dose%20cryo-electron%20ptychography%20of%20proteins.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001031216 8564_ $$uhttps://juser.fz-juelich.de/record/1031216/files/Low-dose%20cryo-electron%20ptychography%20of%20proteins.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001031216 8564_ $$uhttps://juser.fz-juelich.de/record/1031216/files/Low-dose%20cryo-electron%20ptychography%20of%20proteins.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001031216 909CO $$ooai:juser.fz-juelich.de:1031216$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001031216 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186015$$aForschungszentrum Jülich$$b5$$kFZJ
001031216 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173949$$aForschungszentrum Jülich$$b11$$kFZJ
001031216 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165314$$aForschungszentrum Jülich$$b12$$kFZJ
001031216 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5352$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
001031216 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x1
001031216 9141_ $$y2024
001031216 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-29
001031216 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-29
001031216 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-29
001031216 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001031216 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001031216 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-29
001031216 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-29
001031216 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2022$$d2025-01-02
001031216 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
001031216 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
001031216 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-01-30T07:48:07Z
001031216 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-01-30T07:48:07Z
001031216 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2024-01-30T07:48:07Z
001031216 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
001031216 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2025-01-02
001031216 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2025-01-02
001031216 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-02
001031216 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-02
001031216 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-02
001031216 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
001031216 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT COMMUN : 2022$$d2025-01-02
001031216 920__ $$lyes
001031216 9201_ $$0I:(DE-Juel1)ER-C-3-20170113$$kER-C-3$$lStrukturbiologie$$x0
001031216 980__ $$ajournal
001031216 980__ $$aVDB
001031216 980__ $$aUNRESTRICTED
001031216 980__ $$aI:(DE-Juel1)ER-C-3-20170113
001031216 9801_ $$aFullTexts