Journal Article FZJ-2024-05612

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Low-dose cryo-electron ptychography of proteins at sub-nanometer resolution

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2024
Nature Publishing Group UK [London]

Nature Communications 15(1), 8062 () [10.1038/s41467-024-52403-5]

This record in other databases:      

Please use a persistent id in citations: doi:  doi:

Abstract: Cryo-transmission electron microscopy (cryo-EM) of frozen hydrated specimens is an efficient method for the structural analysis of purified biological molecules. However, cryo-EM and cryo-electron tomography are limited by the low signal-to-noise ratio (SNR) of recorded images, making detection of smaller particles challenging. For dose-resilient samples often studied in the physical sciences, electron ptychography – a coherent diffractive imaging technique using 4D scanning transmission electron microscopy (4D-STEM) – has recently demonstrated excellent SNR and resolution down to tens of picometers for thin specimens imaged at room temperature. Here we apply 4D-STEM and ptychographic data analysis to frozen hydrated proteins, reaching sub-nanometer resolution 3D reconstructions. We employ low-dose cryo-EM with an aberration-corrected, convergent electron beam to collect 4D-STEM data for our reconstructions. The high frame rate of the electron detector allows us to record large datasets of electron diffraction patterns with substantial overlaps between the interaction volumes of adjacent scan positions, from which the scattering potentials of the samples are iteratively reconstructed. The reconstructed micrographs show strong SNR enabling the reconstruction of the structure of apoferritin protein at up to 5.8 Å resolution. We also show structural analysis of the Phi92 capsid and sheath, tobacco mosaic virus, and bacteriorhodopsin at slightly lower resolutions.

Classification:

Contributing Institute(s):
  1. Strukturbiologie (ER-C-3)
Research Program(s):
  1. 5352 - Understanding the Functionality of Soft Matter and Biomolecular Systems (POF4-535) (POF4-535)
  2. 5241 - Molecular Information Processing in Cellular Systems (POF4-524) (POF4-524)
  3. 4D-BioSTEM (DE002325) (DE002325)

Appears in the scientific report 2024
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Agriculture, Biology and Environmental Sciences ; Current Contents - Life Sciences ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Essential Science Indicators ; Fees ; IF >= 15 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ER-C > ER-C-3
Workflow collections > Public records
Publications database
Open Access

 Record created 2024-09-20, last modified 2025-04-14


OpenAccess:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)