001     1031833
005     20250701125917.0
024 7 _ |a 10.3390/membranes14100219
|2 doi
024 7 _ |a 10.34734/FZJ-2024-05848
|2 datacite_doi
024 7 _ |a 39452831
|2 pmid
024 7 _ |a WOS:001342790600001
|2 WOS
037 _ _ |a FZJ-2024-05848
082 _ _ |a 570
100 1 _ |a Bittner, Kai
|0 P:(DE-Juel1)191155
|b 0
|e Corresponding author
|u fzj
245 _ _ |a CFD Modelling of Hydrogen Production via Water Splitting in OxygenMembrane Reactors
260 _ _ |a Basel
|c 2024
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1729660822_26265
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The utilization of oxygen transport membranes enables the production of high-purityhydrogen by the thermal decomposition of water below 1000 ◦C. This process is based on a chemicalpotential gradient across the membrane, which is usually achieved by introducing a reducing gas.Computational fluid dynamics (CFD) can be used to model reactors based on this concept. In thisstudy, a modelling approach for water splitting is presented in which oxygen transport throughthe membrane acts as the rate-determining process for the overall reaction. This transport stepis implemented in the CFD simulation. Both gas compartments are modelled in the simulations.Hydrogen and methane are used as reducing gases. The model is validated using experimental datafrom the literature and compared with a simplified perfect mixing modelling approach. Althoughthe main focus of this work is to propose an approach to implement the water splitting in CFDsimulations, a simulation study was conducted to exemplify how CFD modelling can be utilized indesign optimization. Simplified 2-dimensional and rotational symmetric reactor geometries werecompared. This study shows that a parallel overflow of the membrane in an elongated reactor isadvantageous, as this reduces the back diffusion of the reaction products, which increases the meandriving force for oxygen transport through the membrane.
536 _ _ |a 1232 - Power-based Fuels and Chemicals (POF4-123)
|0 G:(DE-HGF)POF4-1232
|c POF4-123
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Margaritis, Nikolaos
|0 P:(DE-Juel1)157695
|b 1
|u fzj
700 1 _ |a Schulze-Küppers, Falk
|0 P:(DE-Juel1)129660
|b 2
|u fzj
700 1 _ |a Wolters, Jörg
|0 P:(DE-Juel1)133776
|b 3
|u fzj
700 1 _ |a Natour, Ghaleb
|0 P:(DE-Juel1)142196
|b 4
|u fzj
773 _ _ |a 10.3390/membranes14100219
|g Vol. 14, no. 10, p. 219 -
|0 PERI:(DE-600)2614641-1
|n 10
|p 219 -
|t Membranes
|v 14
|y 2024
|x 2077-0375
856 4 _ |u https://juser.fz-juelich.de/record/1031833/files/Invoice_MDPI_membranes-3248309_1994.37EUR.pdf
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/1031833/files/Invoice_MDPI_membranes-3248309_1994.37EUR.gif?subformat=icon
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/1031833/files/Invoice_MDPI_membranes-3248309_1994.37EUR.jpg?subformat=icon-1440
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/1031833/files/Invoice_MDPI_membranes-3248309_1994.37EUR.jpg?subformat=icon-180
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/1031833/files/Invoice_MDPI_membranes-3248309_1994.37EUR.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1031833/files/membranes-14-00219.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1031833/files/membranes-14-00219.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1031833/files/membranes-14-00219.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1031833/files/membranes-14-00219.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1031833/files/membranes-14-00219.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1031833
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)191155
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)157695
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129660
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)133776
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)142196
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1232
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-26
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-26
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MEMBRANES-BASEL : 2022
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-09-17T11:22:08Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-09-17T11:22:08Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-09-17T11:22:08Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-05
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-05
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-05
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ZEA-1-20090406
|k ZEA-1
|l Zentralinstitut für Technologie
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ZEA-1-20090406
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ITE-20250108


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21