001032175 001__ 1032175
001032175 005__ 20250203133216.0
001032175 0247_ $$2doi$$a10.1016/j.molliq.2024.126289
001032175 0247_ $$2ISSN$$a0167-7322
001032175 0247_ $$2ISSN$$a1873-3166
001032175 037__ $$aFZJ-2024-06045
001032175 041__ $$aEnglish
001032175 082__ $$a540
001032175 1001_ $$0P:(DE-HGF)0$$aBhalani, Deep$$b0
001032175 245__ $$aDenaturants and Solutol® HS15 in ophthalmic formulations: Insights into their combined effects
001032175 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2024
001032175 3367_ $$2DRIVER$$aarticle
001032175 3367_ $$2DataCite$$aOutput Types/Journal article
001032175 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1731048340_24645
001032175 3367_ $$2BibTeX$$aARTICLE
001032175 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001032175 3367_ $$00$$2EndNote$$aJournal Article
001032175 520__ $$aIn the field of ophthalmology, significant attention is dedicated to developing micellar carriers to enhance ocular drug delivery. Urea is a well-known denaturant and has been used as an excipient in several ocular formulations due to its efficacy as an ocular hypotensive agent. The presence of urea as an excipient may influence the characteristics of the micellar nanocarrier in the formulation and needs to be investigated. Solutol® HS15, a wellknown nonionic surfactant and a commonly used nanocarrierindrugformulations, enhances the solubilization and stability of ocular drugs. However, a detailed study of its interaction with various pharmaceutical excipients is still lacking. With this intention, the present study focuses on comprehending the interaction between Solutol® HS15 micelles with urea and its derivatives. Here, we present a detailed analysis on the influence of urea and its derivatives (methylurea, dimethylurea) on Solutol® HS15 using small-angle neutron scattering (SANS), dynamic light scattering (DLS), and cloud point (CP) measurements. The presence of urea and its derivatives strongly affects the CP, leading to a significant increase in its values when urea derivatives are present. Additionally, the SANS and DLS results also indicate a significant decrease in micellar size, suggesting demicellization. The observed effects of urea derivatives on Solutol® HS15 micelles underscore the importance of considering solventsurfactant interactions in understanding the behavior of surfactant based systems. This research will provide greater insight into the interactions between urea and its derivatives and Solutol® HS15, which will assist in understanding the morphology and size distribution of surfactant micelles for drug delivery applications.
001032175 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001032175 536__ $$0G:(GEPRIS)495795796$$aDFG project G:(GEPRIS)495795796 - Das Phasenverhalten von Proteinlösungen in elektrischen Feldern (495795796)$$c495795796$$x1
001032175 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001032175 7001_ $$0P:(DE-HGF)0$$aSharma, Anish Kumar$$b1
001032175 7001_ $$0P:(DE-HGF)0$$aKuperkar, Ketan$$b2
001032175 7001_ $$0P:(DE-HGF)0$$aSingla, Pankaj$$b3
001032175 7001_ $$0P:(DE-Juel1)184311$$aRay, Debes$$b4$$ufzj
001032175 7001_ $$0P:(DE-HGF)0$$aAswal, Vinod K.$$b5
001032175 7001_ $$0P:(DE-HGF)0$$aPillai, Sadafara A.$$b6$$eCorresponding author
001032175 773__ $$0PERI:(DE-600)1491496-7$$a10.1016/j.molliq.2024.126289$$gVol. 414, p. 126289 -$$p126289 -$$tJournal of molecular liquids$$v414$$x0167-7322$$y2024
001032175 8564_ $$uhttps://juser.fz-juelich.de/record/1032175/files/1-s2.0-S0167732224023481-main.pdf$$yRestricted
001032175 8564_ $$uhttps://juser.fz-juelich.de/record/1032175/files/MOLLIQ-D-24-06300_R1.pdf$$yRestricted
001032175 909CO $$ooai:juser.fz-juelich.de:1032175$$pVDB
001032175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184311$$aForschungszentrum Jülich$$b4$$kFZJ
001032175 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001032175 9141_ $$y2024
001032175 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
001032175 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
001032175 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-30$$wger
001032175 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-30
001032175 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-30
001032175 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-30
001032175 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-30
001032175 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-30
001032175 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MOL LIQ : 2022$$d2024-12-30
001032175 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-30
001032175 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-30
001032175 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ MOL LIQ : 2022$$d2024-12-30
001032175 920__ $$lyes
001032175 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x0
001032175 980__ $$ajournal
001032175 980__ $$aVDB
001032175 980__ $$aI:(DE-Juel1)IBI-4-20200312
001032175 980__ $$aUNRESTRICTED