001     1033567
005     20250822121305.0
024 7 _ |a 10.1109/SCW63240.2024.00158
|2 doi
024 7 _ |a 10.34734/FZJ-2024-06447
|2 datacite_doi
024 7 _ |a WOS:001451792300127
|2 WOS
037 _ _ |a FZJ-2024-06447
100 1 _ |a John, Chelsea Maria
|0 P:(DE-Juel1)187395
|b 0
|u fzj
111 2 _ |a Supercomputing Conference 2024, 2024 International Workshop on Performance, Portability, and Productivity in HPC
|g SC24
|c Atlanta
|d 2024-11-17 - 2024-11-22
|w USA
245 _ _ |a Performance and Power: Systematic Evaluation of AI Workloads on Accelerators with CARAML
260 _ _ |c 2024
300 _ _ |a Nan
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1736168766_29200
|2 PUB:(DE-HGF)
500 _ _ |a Also available at: https://arxiv.org/abs/2409.12994
520 _ _ |a The rapid advancement of machine learning (ML) technologies has driven the development of specialized hardware accelerators designed to facilitate more efficient model training. This paper introduces the CARAML benchmark suite, which is employed to assess performance and energy consumption during the training of transformer-based large language models and computer vision models on a range of hardware accelerators, including systems from NVIDIA, AMD, and Graphcore. CARAML provides a compact, automated, extensible, and reproducible framework for assessing the performance and energy of ML workloads across various novel hardware architectures. The design and implementation of CARAML, along with a custom power measurement tool called jpwr, are discussed in detail.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
536 _ _ |a 5121 - Supercomputing & Big Data Facilities (POF4-512)
|0 G:(DE-HGF)POF4-5121
|c POF4-512
|f POF IV
|x 1
536 _ _ |a OpenGPT-X - Aufbau eines Gaia-X Knotens für große KI-Sprachmodelle und innovative Sprachapplikations-Services; Teilvorhaben: Optimierung und Skalierung auf großen HPC-Systemen (68GX21007F)
|0 G:(DE-Juel-1)68GX21007F
|c 68GX21007F
|x 2
536 _ _ |a MAELSTROM - MAchinE Learning for Scalable meTeoROlogy and cliMate (955513)
|0 G:(EU-Grant)955513
|c 955513
|f H2020-JTI-EuroHPC-2019-1
|x 3
536 _ _ |a Verbundprojekt: MAELSTROM - Skalierbarkeit von Anwendungen des Maschinellen Lernens in den Bereichen Wetter und Klimawissenschaften für das zukünftige Supercomputing (16HPC029)
|0 G:(BMBF)16HPC029
|c 16HPC029
|x 4
536 _ _ |a ATML-X-DEV - ATML Accelerating Devices (ATML-X-DEV)
|0 G:(DE-Juel-1)ATML-X-DEV
|c ATML-X-DEV
|x 5
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Herten, Andreas
|0 P:(DE-Juel1)145478
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Penke, Carolin
|0 P:(DE-Juel1)192254
|b 2
|e Corresponding author
|u fzj
700 1 _ |a Nassyr, Stepan
|0 P:(DE-Juel1)172888
|b 3
|e Corresponding author
|u fzj
773 _ _ |a 10.1109/SCW63240.2024.00158
856 4 _ |u https://conferences.computer.org/sc-wpub/
856 4 _ |u https://juser.fz-juelich.de/record/1033567/files/CARAMLSlides.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1033567/files/CARAML_Bench.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1033567
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)187395
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145478
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)192254
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)172888
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-512
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Supercomputing & Big Data Infrastructures
|9 G:(DE-HGF)POF4-5121
|x 1
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21