Contribution to a conference proceedings FZJ-2024-06447

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Performance and Power: Systematic Evaluation of AI Workloads on Accelerators with CARAML

 ;  ;  ;

2024

Supercomputing Conference 2024, 2024 International Workshop on Performance, Portability, and Productivity in HPC, SC24, AtlantaAtlanta, USA, 17 Nov 2024 - 22 Nov 20242024-11-172024-11-22 Nan () [10.1109/SCW63240.2024.00158]

This record in other databases:    

Please use a persistent id in citations: doi:  doi:

Abstract: The rapid advancement of machine learning (ML) technologies has driven the development of specialized hardware accelerators designed to facilitate more efficient model training. This paper introduces the CARAML benchmark suite, which is employed to assess performance and energy consumption during the training of transformer-based large language models and computer vision models on a range of hardware accelerators, including systems from NVIDIA, AMD, and Graphcore. CARAML provides a compact, automated, extensible, and reproducible framework for assessing the performance and energy of ML workloads across various novel hardware architectures. The design and implementation of CARAML, along with a custom power measurement tool called jpwr, are discussed in detail.


Note: Also available at: https://arxiv.org/abs/2409.12994

Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) (POF4-511)
  2. 5121 - Supercomputing & Big Data Facilities (POF4-512) (POF4-512)
  3. OpenGPT-X - Aufbau eines Gaia-X Knotens für große KI-Sprachmodelle und innovative Sprachapplikations-Services; Teilvorhaben: Optimierung und Skalierung auf großen HPC-Systemen (68GX21007F) (68GX21007F)
  4. MAELSTROM - MAchinE Learning for Scalable meTeoROlogy and cliMate (955513) (955513)
  5. Verbundprojekt: MAELSTROM - Skalierbarkeit von Anwendungen des Maschinellen Lernens in den Bereichen Wetter und Klimawissenschaften für das zukünftige Supercomputing (16HPC029) (16HPC029)
  6. ATML-X-DEV - ATML Accelerating Devices (ATML-X-DEV) (ATML-X-DEV)

Appears in the scientific report 2024
Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Document types > Events > Contributions to a conference proceedings
Workflow collections > Public records
Institute Collections > JSC
Publications database
Open Access

 Record created 2024-11-26, last modified 2025-08-22


OpenAccess:
CARAML_Bench - Download fulltext PDF
CARAMLSlides - Download fulltext PDF
External link:
Download fulltextFulltext
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)