Lecture (Outreach) FZJ-2024-06485

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Tutorial: Deep Learning for Neuroscience

 ;  ;  ;  ;

2024

Lecture at INM Retreat 2024 (Jülich, Germany), 19 Nov 2024 - 19 Nov 20242024-11-192024-11-19

Abstract: Machine Learning – in particular deep learning – has become an indispensable tool for analyzing large neuroscience datasets. The Helmholtz AI team at Jülich is closely connected to these developments and supports research activities at the intersection of AI, high-performance computing (HPC) and neuroscience. Many of the methods and solutions are not limited to neuroscience and medical applications, but can be transferred to different tasks and scientific domains.This tutorial we will give an overview of state-of-the-art deep learning methods in the context of biomedical image analysis and show concrete examples in INM where deep learning already supports neuroscientists in analyzing their data. The second part of this tutorial will offer a hands-on course on how to bring deep learning pipelines on JSC’s HPC systems.


Contributing Institute(s):
  1. Strukturelle und funktionelle Organisation des Gehirns (INM-1)
Research Program(s):
  1. 5254 - Neuroscientific Data Analytics and AI (POF4-525) (POF4-525)
  2. Helmholtz AI - Helmholtz Artificial Intelligence Coordination Unit – Local Unit FZJ (E.40401.62) (E.40401.62)
  3. HIBALL - Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) (InterLabs-0015) (InterLabs-0015)
  4. X-BRAIN (ZT-I-PF-4-061) (ZT-I-PF-4-061)

Appears in the scientific report 2024
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Präsentationen > Vorlesungen
Institutssammlungen > INM > INM-1
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank

 Datensatz erzeugt am 2024-11-26, letzte Änderung am 2024-12-13



Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)