001 | 1033644 | ||
005 | 20250203133241.0 | ||
024 | 7 | _ | |a 10.1109/JSTQE.2024.3489712 |2 doi |
024 | 7 | _ | |a 1077-260X |2 ISSN |
024 | 7 | _ | |a 1558-4542 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2024-06516 |2 datacite_doi |
024 | 7 | _ | |a WOS:001361398200001 |2 WOS |
037 | _ | _ | |a FZJ-2024-06516 |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Liu, Teren |0 P:(DE-Juel1)186980 |b 0 |
245 | _ | _ | |a Electrically Pumped GeSn Micro-Ring Lasers |
260 | _ | _ | |a New York, NY |c 2025 |b IEEE |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1734605062_14157 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Recent progress in the quest for CMOS-integrable GeSn light sources comprises the optically-pumped laser operating at room temperature and the first demonstrations of electrically pumped lasers. In this work, the performance of electrically-pumped double heterostructure GeSn ring laser diodes are evaluated as a function of their geometry and pumping pulse time. In particular, the trade-off between the band structure, i.e., the directness of the GeSn band gap, and the device heat dissipation is discussed in terms of their impact on the emission intensity and threshold current density. |
536 | _ | _ | |a 5234 - Emerging NC Architectures (POF4-523) |0 G:(DE-HGF)POF4-5234 |c POF4-523 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Seidel, Lukas |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Concepción, Omar |0 P:(DE-Juel1)188576 |b 2 |
700 | 1 | _ | |a Reboud, Vincent |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Chelnokov, Alexei |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Capellini, Giovanni |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Oehme, Michael |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Grützmacher, Detlev |0 P:(DE-Juel1)125588 |b 7 |
700 | 1 | _ | |a Buca, Dan |0 P:(DE-Juel1)125569 |b 8 |
773 | _ | _ | |a 10.1109/JSTQE.2024.3489712 |g Vol. 31, no. 1: SiGeSn Infrared Photon., p. 1 - 7 |0 PERI:(DE-600)2025385-0 |n 1: SiGeSn Infrared Photon. |p 1 - 7 |t IEEE journal of selected topics in quantum electronics |v 31 |y 2025 |x 1077-260X |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1033644/files/APC600602492.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1033644/files/IEEE-selected-jstqe-final_submission.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:1033644 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)186980 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)188576 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)125588 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)125569 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5234 |x 0 |
915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2023-10-24 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-24 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-18 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b IEEE J SEL TOP QUANT : 2022 |d 2024-12-18 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-18 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|