001033700 001__ 1033700
001033700 005__ 20250203133223.0
001033700 0247_ $$2doi$$a10.1016/j.ifacol.2024.11.024
001033700 0247_ $$2ISSN$$a1474-6670
001033700 0247_ $$2ISSN$$a2405-8963
001033700 0247_ $$2ISSN$$a2405-8971
001033700 0247_ $$2ISSN$$a2589-3653
001033700 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-06558
001033700 0247_ $$2WOS$$aWOS:001359709100023
001033700 037__ $$aFZJ-2024-06558
001033700 082__ $$a600
001033700 1001_ $$0P:(DE-HGF)0$$aFonck, Simon$$b0$$eCorresponding author
001033700 1112_ $$a17th Interdisciplinary Symposium Automed$$cVillingen-Schwenningen$$d2024-09-11 - 2024-09-13$$gAUTOMED 2024$$wGermany
001033700 245__ $$aRetrospective Classification of ARDS in ICU Time-series data using Random Forest with a focus on Data Pre-processing
001033700 260__ $$aLaxenburg$$bIFAC$$c2024
001033700 300__ $$a129-134
001033700 3367_ $$2ORCID$$aCONFERENCE_PAPER
001033700 3367_ $$033$$2EndNote$$aConference Paper
001033700 3367_ $$2BibTeX$$aINPROCEEDINGS
001033700 3367_ $$2DRIVER$$aconferenceObject
001033700 3367_ $$2DataCite$$aOutput Types/Conference Paper
001033700 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1736170093_29201
001033700 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
001033700 4900_ $$aIFAC-PapersOnLine
001033700 520__ $$aAcute Respiratory Distress Syndrome (ARDS) is a severe lung injury associated with high mortality. Epidemiological studies have shown that ARDS is often diagnosed too late or not at all. Artificial intelligence (AI) can help clinicians identify ARDS and initiate appropriate therapy earlier. Various data must be collected and processed for the training of such AI methods. It is particularly important to consider the data basis and describe the pre-processing steps of the data, as this has a major influence on the results of an AI model. A random forest algorithm is proposed to automatically assess a patient’s condition for compatibility with an ARDS using time-series data (like vital signs, laboratory values and other parameters). We emphasize the data preparation and its influence on the results. The model achieved moderate to excellent results depending on the preparation and dataset.
001033700 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001033700 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001033700 7001_ $$0P:(DE-Juel1)185651$$aFritsch, Sebastian$$b1$$ufzj
001033700 7001_ $$0P:(DE-HGF)0$$aPieper, Hannes$$b2
001033700 7001_ $$0P:(DE-HGF)0$$aBaron, Alexander$$b3
001033700 7001_ $$0P:(DE-HGF)0$$aKowalewski, Stefan$$b4
001033700 7001_ $$0P:(DE-HGF)0$$aStollenwerk, André$$b5
001033700 773__ $$0PERI:(DE-600)2839185-8$$a10.1016/j.ifacol.2024.11.024$$gVol. 58, no. 24, p. 129 - 134$$n24$$p129 - 134$$v58$$x1474-6670$$y2024
001033700 8564_ $$uhttps://juser.fz-juelich.de/record/1033700/files/1-s2.0-S2405896324021517-main.pdf$$yOpenAccess
001033700 909CO $$ooai:juser.fz-juelich.de:1033700$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001033700 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185651$$aForschungszentrum Jülich$$b1$$kFZJ
001033700 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001033700 9141_ $$y2024
001033700 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001033700 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001033700 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-01
001033700 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-01
001033700 920__ $$lno
001033700 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001033700 9201_ $$0I:(DE-Juel1)CASA-20230315$$kCASA$$lCenter for Advanced Simulation and Analytics$$x1
001033700 980__ $$acontrib
001033700 980__ $$aVDB
001033700 980__ $$aUNRESTRICTED
001033700 980__ $$acontb
001033700 980__ $$aI:(DE-Juel1)JSC-20090406
001033700 980__ $$aI:(DE-Juel1)CASA-20230315
001033700 9801_ $$aFullTexts