001     1033700
005     20250203133223.0
024 7 _ |a 10.1016/j.ifacol.2024.11.024
|2 doi
024 7 _ |a 1474-6670
|2 ISSN
024 7 _ |a 2405-8963
|2 ISSN
024 7 _ |a 2405-8971
|2 ISSN
024 7 _ |a 2589-3653
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-06558
|2 datacite_doi
024 7 _ |a WOS:001359709100023
|2 WOS
037 _ _ |a FZJ-2024-06558
082 _ _ |a 600
100 1 _ |a Fonck, Simon
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
111 2 _ |a 17th Interdisciplinary Symposium Automed
|g AUTOMED 2024
|c Villingen-Schwenningen
|d 2024-09-11 - 2024-09-13
|w Germany
245 _ _ |a Retrospective Classification of ARDS in ICU Time-series data using Random Forest with a focus on Data Pre-processing
260 _ _ |a Laxenburg
|c 2024
|b IFAC
300 _ _ |a 129-134
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1736170093_29201
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
490 0 _ |a IFAC-PapersOnLine
520 _ _ |a Acute Respiratory Distress Syndrome (ARDS) is a severe lung injury associated with high mortality. Epidemiological studies have shown that ARDS is often diagnosed too late or not at all. Artificial intelligence (AI) can help clinicians identify ARDS and initiate appropriate therapy earlier. Various data must be collected and processed for the training of such AI methods. It is particularly important to consider the data basis and describe the pre-processing steps of the data, as this has a major influence on the results of an AI model. A random forest algorithm is proposed to automatically assess a patient’s condition for compatibility with an ARDS using time-series data (like vital signs, laboratory values and other parameters). We emphasize the data preparation and its influence on the results. The model achieved moderate to excellent results depending on the preparation and dataset.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Fritsch, Sebastian
|0 P:(DE-Juel1)185651
|b 1
|u fzj
700 1 _ |a Pieper, Hannes
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Baron, Alexander
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kowalewski, Stefan
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Stollenwerk, André
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1016/j.ifacol.2024.11.024
|g Vol. 58, no. 24, p. 129 - 134
|0 PERI:(DE-600)2839185-8
|n 24
|p 129 - 134
|v 58
|y 2024
|x 1474-6670
856 4 _ |u https://juser.fz-juelich.de/record/1033700/files/1-s2.0-S2405896324021517-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1033700
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)185651
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-01
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)CASA-20230315
|k CASA
|l Center for Advanced Simulation and Analytics
|x 1
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)CASA-20230315
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21