001     1033749
005     20241218210701.0
024 7 _ |a 10.34734/FZJ-2024-06600
|2 datacite_doi
037 _ _ |a FZJ-2024-06600
041 _ _ |a English
100 1 _ |a Focke, Niels
|0 P:(DE-Juel1)194652
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 87. Jahrestagung der DPG und DPG-Frühjahrstagung der Sektion Kondensierte Materie (SKM)
|c Berlin
|d 2024-03-17 - 2024-03-22
|w Germany
245 _ _ |a Germanium quantum wells as a novel material platform for spin qubits
260 _ _ |c 2024
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1734500075_23001
|2 PUB:(DE-HGF)
|x Other
502 _ _ |c RWTH Aachen
520 _ _ |a Germanium quantum wells emerged in recent years as a promising platform for gate-defined spin qubits. The unique properties of a two-dimensional hole gas in strained Ge, with exceptional carrier mobility, compatibility with silicon-based technologies, intrinsic spin-orbit-coupling, and anisotropic g-tensor are key to this promise. Particularly, the last two properties allow fast all-electrical qubit driving and enable novel approaches for spin qubit control. Additionally, the low effective mass and Fermi level pinning to the valence band simplifies the fabrication requirements of these devices. These considerations make Germanium quantum wells an excellent material choice for spin qubits. However, many of the platform's physical properties are yet to be understood in depth. Our measurements aim to uncover the microscopic behavior of the quantum well stack. The initial focus is on one and two qubit devices, to explore and understand the anisotropy of spin-orbit interaction and g-factor tensor. We report the current progress of our studies regarding these devices.
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Visser, Lino
|0 P:(DE-Juel1)196090
|b 1
|u fzj
700 1 _ |a Anupam, Spandan
|0 P:(DE-Juel1)184501
|b 2
|u fzj
700 1 _ |a Mourik, Vincent
|0 P:(DE-Juel1)190990
|b 3
|u fzj
700 1 _ |a Mistroni, Alberto
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Yamamoto, Yuji
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Capellini, Giovanni
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Reichmann, Felix
|0 P:(DE-HGF)0
|b 7
856 4 _ |u https://juser.fz-juelich.de/record/1033749/files/Poster.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1033749
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)194652
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)196090
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)184501
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)190990
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-11-20170113
|k PGI-11
|l JARA Institut Quanteninformation
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-11-20170113
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21