001     1034064
005     20241213210713.0
037 _ _ |a FZJ-2024-06885
100 1 _ |a Stellhorn, Annika
|b 0
111 2 _ |a Flipper 2024 as a satellite workshop of the ILL/ESS user meeting
|c Institut Laue-Langevin (ILL) located on the European Photon and Neutron (EPN) campus
|d 2024-12-11 - 2024-12-13
|w France
245 _ _ |a Chiral magnetic structures probed by SANS & GISANS
260 _ _ |c 2024
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1734081867_7856
|2 PUB:(DE-HGF)
|x Invited
520 _ _ |a Chiral magnetic structures in single crystals and thin film structures probed by polarization-analyzedSmall Angle Neutron Scattering (SANS) & Grazing-Incidence-SANS are often connected to complexanalysis procedures and require the development of individual magnetic models. Additionally, precisedata-reduction protocols are needed to distinguish sample scattering from instrumentationaleffects. The more involved the different interactions in one sample system, the more care has tobe taken for a comprehensive understanding as function of, e.g., magnetic field, electric field, temperature,and further parameter sets. The key to a broad understanding then can be given by thecomparison of various analysis methods.Here, I will provide two examples on the complexity of magnetic (GI-)SANS data analysis on differentmaterials: (i) a ferromagnetic/superconducting thin film with temperature dependent chiralmagnetic domain walls, and (ii) a magnetoelectric single crystal with chiral magnetic phases dependingon temperature, magnetic, and electric field. For study (i) we will compare polarization-analyzedGISANS data on Nb/FePd thin films with perpendicular magnetic anisotropy with results from CDXRMS,and evaluate our conclusions together with information gained by Density Functional Theory(DFT) [1]. In study (ii), we present the dependence of magnetic chiral phases occurring in the magnetoelectricsingle crystal Ba2−xSrxMg2Fe12O22 [2] as function of temperature and magnetic field.[1] P. C. Carvalho et al., Nano Lett. 23, 4854−4861 (2023).[2] K. Zhai et al., Nature Communications 8, 519 (2017).
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 1
700 1 _ |a Backs, Alicia
|b 1
700 1 _ |a Klautau, Angela
|b 2
700 1 _ |a Blackburn, Elizabeth
|b 3
700 1 _ |a Kentzinger, Emmanuel
|b 4
700 1 _ |a Miranda, Ivan
|b 5
700 1 _ |a Palm, Juan German Cornelio
|b 6
700 1 _ |a Shen, Lingjia
|b 7
700 1 _ |a Stepancic, Oskar
|b 8
700 1 _ |a Lee, Wai Tung
|b 9
909 C O |o oai:juser.fz-juelich.de:1034064
|p VDB
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 1
914 1 _ |y 2024
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21