001034184 001__ 1034184
001034184 005__ 20250203133231.0
001034184 0247_ $$2doi$$a10.1021/acsnano.3c05907
001034184 0247_ $$2ISSN$$a1936-0851
001034184 0247_ $$2ISSN$$a1936-086X
001034184 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-06995
001034184 0247_ $$2pmid$$a38771774
001034184 0247_ $$2WOS$$aWOS:001228945400001
001034184 037__ $$aFZJ-2024-06995
001034184 082__ $$a540
001034184 1001_ $$0P:(DE-HGF)0$$avan Efferen, Camiel$$b0$$eCorresponding author
001034184 245__ $$a2D Vanadium Sulfides: Synthesis, Atomic Structure Engineering, and Charge Density Waves
001034184 260__ $$aWashington, DC$$bSoc.$$c2024
001034184 3367_ $$2DRIVER$$aarticle
001034184 3367_ $$2DataCite$$aOutput Types/Journal article
001034184 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1734349875_21958
001034184 3367_ $$2BibTeX$$aARTICLE
001034184 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001034184 3367_ $$00$$2EndNote$$aJournal Article
001034184 520__ $$aTwo ultimately thin vanadium-rich 2D materials based on VS2 are created via molecular beam epitaxyand investigated using scanning tunneling microscopy, X-ray photoemission spectroscopy, and density functionaltheory (DFT) calculations. The controlled synthesis of stoichiometric single-layer VS2 or either of the twovanadium-rich materials is achieved by varying the sample coverage and sulfur pressure during annealing. Throughannealing of small stoichiometric single-layer VS2 islands without S pressure, S-vacancies spontaneously order in 1Darrays, giving rise to patterned adsorption. Via the comparison of DFT calculations with scanning tunnelingmicroscopy data, the atomic structure of the S-depleted phase, with a stoichiometry of V4S7, is determined. Bydepositing larger amounts of vanadium and sulfur, which are subsequently annealed in a S-rich atmosphere, self-intercalated ultimately thin V5S8-derived layers are obtained, which host 2 × 2 V-layers between sheets of VS2. Weprovide atomic models for the thinnest V5S8-derived structures. Finally, we use scanning tunneling spectroscopy toinvestigate the charge density wave observed in the 2D V5S8-derived islands.
001034184 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001034184 536__ $$0G:(GEPRIS)319464028$$aSFB 1238 A01 - Konstruktion von 2D-Heterostrukturen für die Kontrolle elektronischer, optischer und magnetischer Eigenschaften (A01) (319464028)$$c319464028$$x1
001034184 536__ $$0G:(GEPRIS)319897474$$aSFB 1238 B06 - Rastertunnelspektroskopie (B06) (319897474)$$c319897474$$x2
001034184 536__ $$0G:(GEPRIS)319898210$$aSFB 1238 C01 - Strukturinversionsasymmetrische Materie und Spin-Orbit-Phänomene mittels ab initio (C01) (319898210)$$c319898210$$x3
001034184 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001034184 7001_ $$0P:(DE-HGF)0$$aHall, Joshua$$b1
001034184 7001_ $$0P:(DE-Juel1)130513$$aAtodiresei, Nicolae$$b2
001034184 7001_ $$0P:(DE-HGF)0$$aBoix, Virginia$$b3
001034184 7001_ $$0P:(DE-HGF)0$$aSafeer, Affan$$b4
001034184 7001_ $$0P:(DE-HGF)0$$aWekking, Tobias$$b5
001034184 7001_ $$0P:(DE-HGF)0$$aVinogradov, Nikolay A.$$b6
001034184 7001_ $$0P:(DE-HGF)0$$aPreobrajenski, Alexei B.$$b7
001034184 7001_ $$0P:(DE-HGF)0$$aKnudsen, Jan$$b8
001034184 7001_ $$0P:(DE-HGF)0$$aFischer, Jeison$$b9
001034184 7001_ $$0P:(DE-HGF)0$$aJolie, Wouter$$b10
001034184 7001_ $$0P:(DE-HGF)0$$aMichely, Thomas$$b11
001034184 773__ $$0PERI:(DE-600)2383064-5$$a10.1021/acsnano.3c05907$$gVol. 18, no. 22, p. 14161 - 14175$$n22$$p14161 - 14175$$tACS nano$$v18$$x1936-0851$$y2024
001034184 8564_ $$uhttps://juser.fz-juelich.de/record/1034184/files/van-efferen-et-al-2024-2d-vanadium-sulfides-synthesis-atomic-structure-engineering-and-charge-density-waves.pdf$$yOpenAccess
001034184 909CO $$ooai:juser.fz-juelich.de:1034184$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001034184 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany$$b0
001034184 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany$$b1
001034184 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130513$$aForschungszentrum Jülich$$b2$$kFZJ
001034184 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Division of Synchrotron Radiation Research, Department of Physics, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden$$b3
001034184 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany$$b4
001034184 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany$$b5
001034184 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a MAX IV Laboratory, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden$$b6
001034184 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a MAX IV Laboratory, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden$$b7
001034184 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Division of Synchrotron Radiation Research, Department of Physics, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden$$b8
001034184 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a NanoLund, Department of Physics, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden$$b8
001034184 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a MAX IV Laboratory, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden$$b8
001034184 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany$$b9
001034184 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany$$b10
001034184 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany$$b11
001034184 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001034184 9141_ $$y2024
001034184 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001034184 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-25
001034184 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001034184 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-25
001034184 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
001034184 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
001034184 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
001034184 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-07
001034184 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
001034184 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS NANO : 2022$$d2025-01-07
001034184 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bACS NANO : 2022$$d2025-01-07
001034184 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001034184 980__ $$ajournal
001034184 980__ $$aVDB
001034184 980__ $$aUNRESTRICTED
001034184 980__ $$aI:(DE-Juel1)PGI-1-20110106
001034184 9801_ $$aFullTexts