Home > Publications database > 2D Vanadium Sulfides: Synthesis, Atomic Structure Engineering, and Charge Density Waves > print |
001 | 1034184 | ||
005 | 20250203133231.0 | ||
024 | 7 | _ | |a 10.1021/acsnano.3c05907 |2 doi |
024 | 7 | _ | |a 1936-0851 |2 ISSN |
024 | 7 | _ | |a 1936-086X |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2024-06995 |2 datacite_doi |
024 | 7 | _ | |a 38771774 |2 pmid |
024 | 7 | _ | |a WOS:001228945400001 |2 WOS |
037 | _ | _ | |a FZJ-2024-06995 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a van Efferen, Camiel |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a 2D Vanadium Sulfides: Synthesis, Atomic Structure Engineering, and Charge Density Waves |
260 | _ | _ | |a Washington, DC |c 2024 |b Soc. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1734349875_21958 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Two ultimately thin vanadium-rich 2D materials based on VS2 are created via molecular beam epitaxyand investigated using scanning tunneling microscopy, X-ray photoemission spectroscopy, and density functionaltheory (DFT) calculations. The controlled synthesis of stoichiometric single-layer VS2 or either of the twovanadium-rich materials is achieved by varying the sample coverage and sulfur pressure during annealing. Throughannealing of small stoichiometric single-layer VS2 islands without S pressure, S-vacancies spontaneously order in 1Darrays, giving rise to patterned adsorption. Via the comparison of DFT calculations with scanning tunnelingmicroscopy data, the atomic structure of the S-depleted phase, with a stoichiometry of V4S7, is determined. Bydepositing larger amounts of vanadium and sulfur, which are subsequently annealed in a S-rich atmosphere, self-intercalated ultimately thin V5S8-derived layers are obtained, which host 2 × 2 V-layers between sheets of VS2. Weprovide atomic models for the thinnest V5S8-derived structures. Finally, we use scanning tunneling spectroscopy toinvestigate the charge density wave observed in the 2D V5S8-derived islands. |
536 | _ | _ | |a 5211 - Topological Matter (POF4-521) |0 G:(DE-HGF)POF4-5211 |c POF4-521 |f POF IV |x 0 |
536 | _ | _ | |a SFB 1238 A01 - Konstruktion von 2D-Heterostrukturen für die Kontrolle elektronischer, optischer und magnetischer Eigenschaften (A01) (319464028) |0 G:(GEPRIS)319464028 |c 319464028 |x 1 |
536 | _ | _ | |a SFB 1238 B06 - Rastertunnelspektroskopie (B06) (319897474) |0 G:(GEPRIS)319897474 |c 319897474 |x 2 |
536 | _ | _ | |a SFB 1238 C01 - Strukturinversionsasymmetrische Materie und Spin-Orbit-Phänomene mittels ab initio (C01) (319898210) |0 G:(GEPRIS)319898210 |c 319898210 |x 3 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Hall, Joshua |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Atodiresei, Nicolae |0 P:(DE-Juel1)130513 |b 2 |
700 | 1 | _ | |a Boix, Virginia |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Safeer, Affan |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Wekking, Tobias |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Vinogradov, Nikolay A. |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Preobrajenski, Alexei B. |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Knudsen, Jan |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Fischer, Jeison |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Jolie, Wouter |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Michely, Thomas |0 P:(DE-HGF)0 |b 11 |
773 | _ | _ | |a 10.1021/acsnano.3c05907 |g Vol. 18, no. 22, p. 14161 - 14175 |0 PERI:(DE-600)2383064-5 |n 22 |p 14161 - 14175 |t ACS nano |v 18 |y 2024 |x 1936-0851 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1034184/files/van-efferen-et-al-2024-2d-vanadium-sulfides-synthesis-atomic-structure-engineering-and-charge-density-waves.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1034184 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany |0 I:(DE-HGF)0 |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany |0 I:(DE-HGF)0 |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)130513 |
910 | 1 | _ | |a Division of Synchrotron Radiation Research, Department of Physics, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden |0 I:(DE-HGF)0 |b 3 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany |0 I:(DE-HGF)0 |b 4 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany |0 I:(DE-HGF)0 |b 5 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a MAX IV Laboratory, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden |0 I:(DE-HGF)0 |b 6 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a MAX IV Laboratory, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden |0 I:(DE-HGF)0 |b 7 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Division of Synchrotron Radiation Research, Department of Physics, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden |0 I:(DE-HGF)0 |b 8 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a NanoLund, Department of Physics, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden |0 I:(DE-HGF)0 |b 8 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a MAX IV Laboratory, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden |0 I:(DE-HGF)0 |b 8 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany |0 I:(DE-HGF)0 |b 9 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany |0 I:(DE-HGF)0 |b 10 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany |0 I:(DE-HGF)0 |b 11 |6 P:(DE-HGF)0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-521 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Materials |9 G:(DE-HGF)POF4-5211 |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-25 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-07 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-07 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-07 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2025-01-07 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-07 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ACS NANO : 2022 |d 2025-01-07 |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b ACS NANO : 2022 |d 2025-01-07 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|