001034923 001__ 1034923
001034923 005__ 20250203133243.0
001034923 0247_ $$2doi$$a10.1039/D4CP04384G
001034923 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-00037
001034923 0247_ $$2pmid$$a39661081
001034923 0247_ $$2WOS$$aWOS:001374199200001
001034923 037__ $$aFZJ-2025-00037
001034923 082__ $$a540
001034923 1001_ $$0P:(DE-Juel1)190723$$aZeng, Yuan$$b0$$eCorresponding author
001034923 245__ $$aCharacterization of high Zr/Ce ratio Ba(Zr,Ce,Y)O3−δ proton conductors: investigating the impact of Y on the properties of materials
001034923 260__ $$aCambridge$$bRSC Publ.$$c2025
001034923 3367_ $$2DRIVER$$aarticle
001034923 3367_ $$2DataCite$$aOutput Types/Journal article
001034923 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1736406965_10829
001034923 3367_ $$2BibTeX$$aARTICLE
001034923 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001034923 3367_ $$00$$2EndNote$$aJournal Article
001034923 520__ $$aAcceptor-substituted Ba(Zr,Ce)O3 proton conducting oxides have attracted significant attention due to their excellent proton conductivity at intermediate temperatures (400–600 °C). A high Zr/Ce ratio is crucial for maintaining stability in humid or other harsh atmospheres. Herein, a systematic study was conducted on the phase composition, microstructure, and the resulting hydration ability and electrochemical performance of high Zr/Ce ratio Ba(Zr,Ce)O3 solid solutions with different Y substitution levels (10 at% to 30 at%). In this substitution range, no apparent secondary phase can be found from XRD, leading to a continuous increase in hydration content. A Y-rich phase was observed in SEM for compositions with high levels of Y substitution. The impact of Y on proton conduction was examined using EIS, with particular attention on elucidating the effects of varying amounts of Y on bulk proton conduction. The increase of proton conductivity was primarily due to the increased charge carrier (proton) concentration caused by Y substitution. Different concentrations of Y have little effect on proton mobility, indicating a compromise between different mechanisms such as the Y trapping effect and the nano-percolation effect. Grain boundary proton conduction was discussed combining the TEM-EDS results to explain the space charge layer effect. Mechanical properties and thermo-chemical stability were also considered to pave the way for real applications.
001034923 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001034923 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
001034923 7001_ $$0P:(DE-Juel1)174079$$aKindelmann, Moritz$$b1
001034923 7001_ $$0P:(DE-HGF)0$$aKwati, Leonard$$b2
001034923 7001_ $$0P:(DE-HGF)0$$aLaura, Schaefer$$b3
001034923 7001_ $$0P:(DE-Juel1)192509$$aYao, Kai$$b4
001034923 7001_ $$0P:(DE-Juel1)129755$$aMalzbender, Jürgen$$b5
001034923 7001_ $$0P:(DE-Juel1)129765$$aMüller, Michael$$b6
001034923 7001_ $$0P:(DE-Juel1)162228$$aGuillon, Olivier$$b7
001034923 7001_ $$0P:(DE-Juel1)129617$$aIvanova, Mariya$$b8
001034923 7001_ $$0P:(DE-Juel1)129636$$aMenzler, Norbert H.$$b9
001034923 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/D4CP04384G$$p885-896$$tPhysical chemistry, chemical physics$$v27$$x1463-9076$$y2025
001034923 8564_ $$uhttps://juser.fz-juelich.de/record/1034923/files/d4cp04384g.pdf$$yOpenAccess
001034923 8767_ $$d2025-01-31$$eHybrid-OA$$jPublish and Read
001034923 909CO $$ooai:juser.fz-juelich.de:1034923$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001034923 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190723$$aForschungszentrum Jülich$$b0$$kFZJ
001034923 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174079$$aForschungszentrum Jülich$$b1$$kFZJ
001034923 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Kyushu University$$b2
001034923 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University of Stuttgart$$b3
001034923 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192509$$aForschungszentrum Jülich$$b4$$kFZJ
001034923 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129755$$aForschungszentrum Jülich$$b5$$kFZJ
001034923 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129765$$aForschungszentrum Jülich$$b6$$kFZJ
001034923 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162228$$aForschungszentrum Jülich$$b7$$kFZJ
001034923 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129617$$aForschungszentrum Jülich$$b8$$kFZJ
001034923 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129636$$aForschungszentrum Jülich$$b9$$kFZJ
001034923 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001034923 9141_ $$y2025
001034923 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001034923 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001034923 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001034923 915pc $$0PC:(DE-HGF)0110$$2APC$$aTIB: Royal Society of Chemistry 2021
001034923 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
001034923 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
001034923 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
001034923 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001034923 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-09$$wger
001034923 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-09
001034923 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-09
001034923 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-09
001034923 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-09
001034923 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-09
001034923 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2022$$d2024-12-09
001034923 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-09
001034923 9201_ $$0I:(DE-Juel1)IMD-2-20101013$$kIMD-2$$lWerkstoffsynthese und Herstellungsverfahren$$x0
001034923 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
001034923 9801_ $$aFullTexts
001034923 980__ $$ajournal
001034923 980__ $$aVDB
001034923 980__ $$aUNRESTRICTED
001034923 980__ $$aI:(DE-Juel1)IMD-2-20101013
001034923 980__ $$aI:(DE-82)080011_20140620
001034923 980__ $$aAPC