001035316 001__ 1035316
001035316 005__ 20250203103432.0
001035316 037__ $$aFZJ-2025-00374
001035316 1001_ $$0P:(DE-Juel1)198713$$aKumar, Rishabh$$b0$$eCorresponding author$$ufzj
001035316 1112_ $$aSci & Hike Retreat$$wGermany
001035316 245__ $$aPraseodymium Doped Ceria as Nickel-free Fuel Electrode Material for Solid Oxide Electrolysis Cells
001035316 260__ $$c2024
001035316 3367_ $$033$$2EndNote$$aConference Paper
001035316 3367_ $$2DataCite$$aOther
001035316 3367_ $$2BibTeX$$aINPROCEEDINGS
001035316 3367_ $$2ORCID$$aLECTURE_SPEECH
001035316 3367_ $$0PUB:(DE-HGF)31$$2PUB:(DE-HGF)$$aTalk (non-conference)$$btalk$$mtalk$$s1736518769_6154$$xOther
001035316 3367_ $$2DINI$$aOther
001035316 520__ $$aSolid oxide electrolysis cells (SOECs) are promising electrochemical conversion devices for Power-to-Gas technologies but face degradation issues with conventional nickel-based fuel electrodes (e.g. Ni-YSZ or Ni-GDC) at high current densities. This research investigates the potential of using praseodymium doped ceria (PDC) as a nickel-free alternative. For this purpose, three different materials were tested: 5% lanthanum and 5% praseodymium doped ceria (LPDC), 10% praseodymium doped ceria (PDC10), and 30% praseodymium doped ceria (PDC30). In an electrochemical performance evaluation under steam electrolysis conditions at 900°C, PDC10 outperformed both LPDC (-1.37 A/cm²) and PDC30 (-1.1 A/cm²), achieving a current density of -1.5 A/cm² at 1.5 V. Future work will include structural and electrochemical analysis of all three samples to evaluate their physico-chemical behavior at a fundamental level. In conclusion, these findings suggest that praseodymium-doped ceria could be a promising candidate for efficient and durable fuel electrode materials in SOECs.
001035316 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001035316 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
001035316 7001_ $$0P:(DE-Juel1)169490$$aVibhu, Vaibhav$$b1
001035316 7001_ $$0P:(DE-Juel1)187524$$aUecker, Jan$$b2
001035316 7001_ $$0P:(DE-Juel1)129952$$ade Haart, L. G. J.$$b3
001035316 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b4$$ufzj
001035316 909CO $$ooai:juser.fz-juelich.de:1035316$$pVDB
001035316 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)198713$$aForschungszentrum Jülich$$b0$$kFZJ
001035316 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)198713$$aRWTH Aachen$$b0$$kRWTH
001035316 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169490$$aForschungszentrum Jülich$$b1$$kFZJ
001035316 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187524$$aForschungszentrum Jülich$$b2$$kFZJ
001035316 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129952$$aForschungszentrum Jülich$$b3$$kFZJ
001035316 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b4$$kFZJ
001035316 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b4$$kRWTH
001035316 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001035316 9141_ $$y2024
001035316 920__ $$lyes
001035316 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0
001035316 980__ $$atalk
001035316 980__ $$aVDB
001035316 980__ $$aI:(DE-Juel1)IET-1-20110218
001035316 980__ $$aUNRESTRICTED