001     1037569
005     20250610131453.0
024 7 _ |a 10.1002/aenm.202404028
|2 doi
024 7 _ |a 1614-6832
|2 ISSN
024 7 _ |a 1614-6840
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-00754
|2 datacite_doi
024 7 _ |a WOS:001380216200001
|2 WOS
037 _ _ |a FZJ-2025-00754
082 _ _ |a 050
100 1 _ |a Wu
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Understanding Degradation and Enhancing Cycling Stabilityfor High-Voltage LiCoO2-Based Li-Metal Batteries
260 _ _ |a Weinheim
|c 2025
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1749210682_31911
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Improving the energy density of Lithium (Li)-ion batteries (LIBs) is vital inmeeting the growing demand for high-performance energy storage andconversion systems. Developing high-voltage LIBs using high-capacity andhigh-voltage cathode materials is promising for enhancing energy density.However, conventional cathode and electrolyte materials face seriousdecomposition and structural degradation at high operating voltages. Herein,a dual-salts electrolyte of lithium bis(fluorosulfonyl)imide and lithiumbis(trifluoromethanesulfonyl)imide(LiFSI-LiTFSI) is developed to improve thecycling stability of high-voltage lithium cobalt oxide (LiCoO2, LCO)||Libatteries. Operando X-ray diffraction analysis experiments are carried out tocharacterize the structural stability of cathode materials, suggesting a severeirreversible phase transformation at high voltage levels. Aging simulations,combined with experimental studies, suggest that a fast loss of activematerials is mainly responsible for the capacity loss at high voltages.Carbon-coated LCO cathodes are synthesized to mitigate cycling degradation.The designed LCO||Li cells exhibit a high-capacity retention of over 85% after400 cycles at 4 .7V. The present work provides a novel insight intounderstanding the degradation and enhancing the stability of high-voltageLCO-based Li-metal batteries, thus facilitating their practical applications.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
536 _ _ |a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
|0 G:(DE-Juel1)HITEC-20170406
|c HITEC-20170406
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
650 2 7 |a Chemistry
|0 V:(DE-MLZ)SciArea-110
|2 V:(DE-HGF)
|x 0
650 1 7 |a Energy
|0 V:(DE-MLZ)GC-110
|2 V:(DE-HGF)
|x 0
700 1 _ |a Chang
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Chen, Zhiqiang
|0 P:(DE-Juel1)176976
|b 2
700 1 _ |a Windmüller, Anna
|0 P:(DE-Juel1)188297
|b 3
700 1 _ |a Tsai, Chih-Long
|0 P:(DE-Juel1)156244
|b 4
700 1 _ |a Qin, Zhizhen
|0 P:(DE-Juel1)190219
|b 5
700 1 _ |a Danilov, Dmitri
|0 P:(DE-Juel1)173719
|b 6
700 1 _ |a Zhou, Lei
|0 P:(DE-Juel1)173933
|b 7
700 1 _ |a Daniel, Davis Thomas
|0 P:(DE-Juel1)185897
|b 8
700 1 _ |a Schaps, Kristian
|0 P:(DE-Juel1)195868
|b 9
700 1 _ |a Ahmed, Jehad
|0 P:(DE-Juel1)201235
|b 10
700 1 _ |a Raijmakers, Luc
|0 P:(DE-Juel1)176196
|b 11
700 1 _ |a Yu
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Tempel, Hermann
|0 P:(DE-Juel1)161208
|b 13
700 1 _ |a Granwehr, Josef
|0 P:(DE-Juel1)162401
|b 14
700 1 _ |a Chen, Chunguang
|0 P:(DE-Juel1)172735
|b 15
700 1 _ |a Wei
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 17
700 1 _ |a Notten, Peter H. L.
|0 P:(DE-Juel1)165918
|b 18
|e Corresponding author
773 _ _ |a 10.1002/aenm.202404028
|g p. 2404028
|0 PERI:(DE-600)2594556-7
|n 7
|p 2404028
|t Advanced energy materials
|v 15
|y 2025
|x 1614-6832
856 4 _ |u https://juser.fz-juelich.de/record/1037569/files/Advanced%20Energy%20Materials%20-%202024%20-%20Wu%20-%20Understanding%20Degradation%20and%20Enhancing%20Cycling%20Stability%20for%20High%E2%80%90Voltage.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1037569
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)188297
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)156244
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)190219
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-Juel1)190219
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)173719
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)185897
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)201235
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 10
|6 P:(DE-Juel1)201235
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)176196
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)161208
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)162401
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 14
|6 P:(DE-Juel1)162401
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 17
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 17
|6 P:(DE-Juel1)156123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 18
|6 P:(DE-Juel1)165918
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-12
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-12
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-12
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-12
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b ADV ENERGY MATER : 2022
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ENERGY MATER : 2022
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-12
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-1-20110218
|k IET-1
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IET-1-20110218
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21