Journal Article FZJ-2025-00754

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Understanding Degradation and Enhancing Cycling Stabilityfor High-Voltage LiCoO2-Based Li-Metal Batteries

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2025
Wiley-VCH Weinheim

Advanced energy materials 15(7), 2404028 () [10.1002/aenm.202404028]

This record in other databases:    

Please use a persistent id in citations: doi:  doi:

Abstract: Improving the energy density of Lithium (Li)-ion batteries (LIBs) is vital inmeeting the growing demand for high-performance energy storage andconversion systems. Developing high-voltage LIBs using high-capacity andhigh-voltage cathode materials is promising for enhancing energy density.However, conventional cathode and electrolyte materials face seriousdecomposition and structural degradation at high operating voltages. Herein,a dual-salts electrolyte of lithium bis(fluorosulfonyl)imide and lithiumbis(trifluoromethanesulfonyl)imide(LiFSI-LiTFSI) is developed to improve thecycling stability of high-voltage lithium cobalt oxide (LiCoO2, LCO)||Libatteries. Operando X-ray diffraction analysis experiments are carried out tocharacterize the structural stability of cathode materials, suggesting a severeirreversible phase transformation at high voltage levels. Aging simulations,combined with experimental studies, suggest that a fast loss of activematerials is mainly responsible for the capacity loss at high voltages.Carbon-coated LCO cathodes are synthesized to mitigate cycling degradation.The designed LCO||Li cells exhibit a high-capacity retention of over 85% after400 cycles at 4 .7V. The present work provides a novel insight intounderstanding the degradation and enhancing the stability of high-voltageLCO-based Li-metal batteries, thus facilitating their practical applications.

Keyword(s): Energy (1st) ; Chemistry (2nd)

Classification:

Contributing Institute(s):
  1. Grundlagen der Elektrochemie (IET-1)
Research Program(s):
  1. 1223 - Batteries in Application (POF4-122) (POF4-122)
  2. HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406) (HITEC-20170406)

Appears in the scientific report 2025
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; DEAL Wiley ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 25 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IET > IET-1
Workflow collections > Public records
Publications database
Open Access

 Record created 2025-01-19, last modified 2025-06-10


OpenAccess:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)