001     1037900
005     20250203103256.0
037 _ _ |a FZJ-2025-01038
100 1 _ |a Feiler, Florian
|0 P:(DE-Juel1)198927
|b 0
111 2 _ |a International Conference on Neuromorphic Systems (ICONS)
|c Arlington, Virginia
|d 2024-07-30 - 2024-08-02
|w USA
245 _ _ |a Unsupervised Learning of Spatio-Temporal Patterns in Spiking Neuronal Networks
260 _ _ |c 2024
300 _ _ |a 366 - 370
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1738230155_8094
|2 PUB:(DE-HGF)
520 _ _ |a The ability to predict future events or patterns based on previous experience is crucial for many applications such as traffic control, weather forecasting, or supply chain management. While modern supervised Machine Learning approaches excel at such sequential tasks, they are computationally expensive and require large training data. A previous work presented a biologically plausible sequence learning model, developed through a bottom-up approach, consisting of a spiking neural network and unsupervised local learning rules. The model in its original formulation identifies only a specific type of sequence elements composed of synchronous spikes by activating a subset of neurons with identical stimulus preference. In this work, we extend the model to detect and learn sequences of various spatio-temporal patterns (STPs) by incorporating plastic connections in the input synapses. We showcase that the model is able to learn and predict high-order sequences. We further study the robustness of the model against different input settings and parameters.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
536 _ _ |a BMBF 16ME0398K - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0398K)
|0 G:(DE-82)BMBF-16ME0398K
|c BMBF-16ME0398K
|x 1
536 _ _ |a BMBF 16ME0399 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0399)
|0 G:(DE-82)BMBF-16ME0399
|c BMBF-16ME0399
|x 2
700 1 _ |a Neftci, Emre
|0 P:(DE-Juel1)188273
|b 1
700 1 _ |a Bouhadjar, Younes
|0 P:(DE-Juel1)176778
|b 2
|e Corresponding author
909 C O |o oai:juser.fz-juelich.de:1037900
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)188273
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)176778
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
914 1 _ |y 2024
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-15-20210701
|k PGI-15
|l Neuromorphic Software Eco System
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 1
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-15-20210701
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21