Contribution to a conference proceedings FZJ-2025-01092

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
SNNAX-Spiking Neural Networks in JAX

 ;  ;

2024

2024 International Conference on Neuromorphic Systems (ICONS), Arlington, VirginiaArlington, Virginia, USA, 30 Jul 2024 - 2 Aug 20242024-07-302024-08-02 251 - 255 () [10.34734/FZJ-2025-01092]

This record in other databases:

Please use a persistent id in citations: doi:

Abstract: Spiking Neural Networks (SNNs) simulators are essential tools to prototype biologically inspired models and neuromorphic hardware architectures and predict their performance. For such a tool, ease of use and flexibility are critical, but so is simulation speed especially given the complexity inherent to simulating SNN. Here, we present SNNAX, a JAX-based framework for simulating and training such models with PyTorch-like intuitiveness and JAX-like execution speed. SNNAX models are easily extended and customized to fit the desired model specifications and target neuromorphic hardware. Additionally, SNNAX offers key features for optimizing the training and deployment of SNNs such as flexible automatic differentiation and just-in-time compilation. We evaluate and compare SNNAX to other commonly used machine learning (ML) frameworks used for programming SNNs. We provide key performance metrics, best practices, documented examples for simulating SNNs in SNNAX, and implement several benchmarks used in the literature.


Contributing Institute(s):
  1. Neuromorphic Software Eco System (PGI-15)
Research Program(s):
  1. 5234 - Emerging NC Architectures (POF4-523) (POF4-523)
  2. GREENEDGE - Taming the environmental impact of mobile networks through GREEN EDGE computing platforms (953775) (953775)
  3. BMBF 03ZU1106CA - NeuroSys: Algorithm-Hardware Co-Design (Projekt C) - A (03ZU1106CA) (03ZU1106CA)
  4. BMBF 03ZU1106CB - NeuroSys: Algorithm-Hardware Co-Design (Projekt C) - B (BMBF-03ZU1106CB) (BMBF-03ZU1106CB)
  5. BMBF 16ME0400 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (16ME0400) (16ME0400)

Appears in the scientific report 2024
Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Ereignisse > Beiträge zu Proceedings
Institutssammlungen > PGI > PGI-15
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2025-01-24, letzte Änderung am 2025-02-03


OpenAccess:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenVolltext
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)