001038173 001__ 1038173
001038173 005__ 20250310131241.0
001038173 0247_ $$2doi$$a10.1002/solr.202400874
001038173 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-01220
001038173 0247_ $$2WOS$$aWOS:001391027000001
001038173 037__ $$aFZJ-2025-01220
001038173 082__ $$a600
001038173 1001_ $$00000-0001-9797-8280$$aArango-Marín, Vanessa$$b0$$eCorresponding author
001038173 245__ $$aAerosol‐Jet‐Printed Silver Nanowires as Top Electrodes in Organic Photovoltaic Devices
001038173 260__ $$aWeinheim$$bWiley-VCH$$c2025
001038173 3367_ $$2DRIVER$$aarticle
001038173 3367_ $$2DataCite$$aOutput Types/Journal article
001038173 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1740133097_12350
001038173 3367_ $$2BibTeX$$aARTICLE
001038173 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001038173 3367_ $$00$$2EndNote$$aJournal Article
001038173 520__ $$aAerosol jet printing (AJP) is an effective method for manufacturing organic photovoltaic (OPV) devices for indoor use. Its noncontact deposition, without posttreatment, and high-resolution 3D pattern printing capabilities make it ideal for using functional nanomaterial inks. This study explores ultrasonic AJP (uAJP) atomization to deposit silver nanowires (AgNW) as the top electrode layer (TEL) in OPV devices. The OPV stack is fabricated up to the hole transport layer using high-throughput screening (HTS) methodologies. Different deposition techniques, including spin-coating, blade-coating, and uAJP of AgNW inks, as well as thermal evaporation of silver, are compared. Scanning electron microscopy analysis shows that the E2X AgNW ink formed a compact TEL layer. Combining HTS setups, right selection of interlayers and uAJP method, automated, solution-processed OPV devices with power conversion efficiencies of 9.54% on an active layer of 0.0232 cm2 are achieved, the highest reported for OPV devices using uAJP AgNW inks as top electrodes.
001038173 536__ $$0G:(DE-HGF)POF4-1212$$a1212 - Materials and Interfaces (POF4-121)$$cPOF4-121$$fPOF IV$$x0
001038173 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001038173 7001_ $$00000-0002-5022-9562$$aRocha-Ortiz, Juan S.$$b1
001038173 7001_ $$0P:(DE-Juel1)190775$$aOsterrieder, Tobias$$b2$$ufzj
001038173 7001_ $$00000-0003-1732-1233$$aBarabash, Anastasia$$b3
001038173 7001_ $$00000-0001-9098-9171$$aOsvet, Andres$$b4
001038173 7001_ $$0P:(DE-Juel1)196016$$aWortmann, Jonas$$b5$$ufzj
001038173 7001_ $$0P:(DE-Juel1)180635$$aHeumüller, Thomas$$b6$$ufzj
001038173 7001_ $$0P:(DE-Juel1)201377$$aLiu, Chao$$b7$$ufzj
001038173 7001_ $$0P:(DE-Juel1)177626$$aHauch, Jens$$b8$$ufzj
001038173 7001_ $$0P:(DE-Juel1)176427$$aBrabec, Christoph J.$$b9$$eCorresponding author
001038173 773__ $$0PERI:(DE-600)2882014-9$$a10.1002/solr.202400874$$gp. 2400874$$n3$$p2400874$$tSolar RRL$$v9$$x2367-198X$$y2025
001038173 8564_ $$uhttps://juser.fz-juelich.de/record/1038173/files/Solar%20RRL%20-%202025%20-%20Arango%E2%80%90Mar%C3%ADn%20-%20Aerosol%E2%80%90Jet%E2%80%90Printed%20Silver%20Nanowires%20as%20Top%20Electrodes%20in%20Organic%20Photovoltaic%20Devices.pdf$$yOpenAccess
001038173 909CO $$ooai:juser.fz-juelich.de:1038173$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001038173 9101_ $$0I:(DE-588b)5008462-8$$60000-0001-9797-8280$$aForschungszentrum Jülich$$b0$$kFZJ
001038173 9101_ $$0I:(DE-588b)5008462-8$$60000-0002-5022-9562$$aForschungszentrum Jülich$$b1$$kFZJ
001038173 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190775$$aForschungszentrum Jülich$$b2$$kFZJ
001038173 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196016$$aForschungszentrum Jülich$$b5$$kFZJ
001038173 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180635$$aForschungszentrum Jülich$$b6$$kFZJ
001038173 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201377$$aForschungszentrum Jülich$$b7$$kFZJ
001038173 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177626$$aForschungszentrum Jülich$$b8$$kFZJ
001038173 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176427$$aForschungszentrum Jülich$$b9$$kFZJ
001038173 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1212$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
001038173 9141_ $$y2025
001038173 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-09
001038173 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-09
001038173 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-09
001038173 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001038173 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOL RRL : 2022$$d2024-12-09
001038173 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSOL RRL : 2022$$d2024-12-09
001038173 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-09$$wger
001038173 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-09
001038173 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-09
001038173 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001038173 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-09
001038173 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-09
001038173 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-09
001038173 920__ $$lyes
001038173 9201_ $$0I:(DE-Juel1)IET-2-20140314$$kIET-2$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
001038173 980__ $$ajournal
001038173 980__ $$aVDB
001038173 980__ $$aUNRESTRICTED
001038173 980__ $$aI:(DE-Juel1)IET-2-20140314
001038173 9801_ $$aFullTexts