Journal Article FZJ-2025-01220

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Aerosol‐Jet‐Printed Silver Nanowires as Top Electrodes in Organic Photovoltaic Devices

 ;  ;  ;  ;  ;  ;  ;  ;  ;

2025
Wiley-VCH Weinheim

Solar RRL 9(3), 2400874 () [10.1002/solr.202400874]

This record in other databases:  

Please use a persistent id in citations: doi:  doi:

Abstract: Aerosol jet printing (AJP) is an effective method for manufacturing organic photovoltaic (OPV) devices for indoor use. Its noncontact deposition, without posttreatment, and high-resolution 3D pattern printing capabilities make it ideal for using functional nanomaterial inks. This study explores ultrasonic AJP (uAJP) atomization to deposit silver nanowires (AgNW) as the top electrode layer (TEL) in OPV devices. The OPV stack is fabricated up to the hole transport layer using high-throughput screening (HTS) methodologies. Different deposition techniques, including spin-coating, blade-coating, and uAJP of AgNW inks, as well as thermal evaporation of silver, are compared. Scanning electron microscopy analysis shows that the E2X AgNW ink formed a compact TEL layer. Combining HTS setups, right selection of interlayers and uAJP method, automated, solution-processed OPV devices with power conversion efficiencies of 9.54% on an active layer of 0.0232 cm2 are achieved, the highest reported for OPV devices using uAJP AgNW inks as top electrodes.

Classification:

Contributing Institute(s):
  1. Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien (IET-2)
Research Program(s):
  1. 1212 - Materials and Interfaces (POF4-121) (POF4-121)

Appears in the scientific report 2025
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; DEAL Wiley ; Essential Science Indicators ; IF >= 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IET > IET-2
Workflow collections > Public records
Publications database
Open Access

 Record created 2025-01-27, last modified 2025-03-10


OpenAccess:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)